trident.ray_generator.make_simple_ray

trident.ray_generator.make_simple_ray(dataset_file, start_position, end_position, lines=None, ftype='gas', fields=None, solution_filename=None, data_filename=None, trajectory=None, redshift=None, field_parameters=None, setup_function=None, load_kwargs=None, line_database=None, ionization_table=None)[source]

Create a yt LightRay object for a single dataset (eg CGM). This is a wrapper function around yt’s LightRay interface to reduce some of the complexity there.

A simple ray is a straight line passing through a single dataset where each gas cell intersected by the line is sampled for the desired fields and stored. Several additional fields are created and stored including dl to represent the path length in space for each element in the ray, v_los to represent the line of sight velocity along the ray, and redshift, redshift_dopp, and redshift_eff to represent the cosmological redshift, doppler redshift and effective redshift (combined doppler and cosmological) for each element of the ray.

A simple ray is typically specified by its start and end positions in the dataset volume. Because a simple ray only probes a single output, it lacks foreground absorbers between the observer at z=0 and the redshift of the dataset that one would naturally encounter. Thus it is usually only appropriate for studying the circumgalactic medium rather than the intergalactic medium.

This function can accept a yt dataset already loaded in memory, or it can load a dataset if you pass it the dataset’s filename and optionally any load_kwargs or setup_function necessary to load/process it properly before generating the LightRay object.

The :lines: keyword can be set to automatically add all fields to the resulting ray necessary for later use with the SpectrumGenerator class. If the necessary fields do not exist for your line of choice, they will be added to your dataset before adding them to the ray.

Parameters

Dataset_file

string or yt Dataset object

Either a yt dataset or the filename of a dataset on disk. If you are passing it a filename, consider usage of the load_kwargs and setup_function kwargs.

Start_position, end_position

list of floats or YTArray object

The coordinates of the starting and ending position of the desired ray. If providing a raw list, coordinates are assumed to be in code length units, but if providing a YTArray, any units can be specified.

Lines

list of strings, optional

List of strings that determine which fields will be added to the ray to support line deposition to an absorption line spectrum. List can include things like “C”, “O VI”, or “Mg II ####”, where #### would be the integer wavelength value of the desired line. If set to ‘all’, includes all possible ions from H to Zn. :lines: can be used in conjunction with :fields: as they will not override each other. Default: None

Ftype

string, optional

This is now deprecated and unnecessary. Default: “gas”

Fields

list of strings, optional

The list of which fields to store in the output LightRay. See :lines: keyword for additional functionality that will add fields necessary for creating absorption line spectra for certain line features. Default: None

Solution_filename

string, optional

Output filename of text file containing trajectory of LightRay through the dataset. Default: None

Data_filename

string, optional

Output filename for ray data stored as an HDF5 file. Note that at present, you must save a ray to disk in order for it to be returned by this function. If set to None, defaults to ‘ray.h5’. Default: None

Trajectory

list of floats, optional

The (r, theta, phi) direction of the LightRay. Use either end_position or trajectory, but not both. Default: None

Redshift

float, optional

Sets the highest cosmological redshift of the ray. By default, it will use the cosmological redshift of the dataset, if set, and if not set, it will use a redshift of 0. Default: None

Field_parameters

optional, dict Used to set field parameters in light rays. For example, if the ‘bulk_velocity’ field parameter is set, the relative velocities used to calculate peculiar velocity will be adjusted accordingly. Default: None.

Setup_function

function, optional

A function that will be called on the dataset as it is loaded but before the LightRay is generated. Very useful for adding derived fields and other manipulations of the dataset prior to LightRay creation. Default: None

Load_kwargs

dict, optional

Dictionary of kwargs to be passed to the yt “load” function prior to creating the LightRay. Very useful for many frontends like Gadget, Tipsy, etc. for passing in “bounding_box”, “unit_base”, etc. Default: None

Line_database

string, optional

For use with the :lines: keyword. If you want to limit the available ion fields to be added to those available in a particular subset, you can use a LineDatabase. This means when you set :lines:=’all’, it will only use those ions present in the corresponding LineDatabase. If :LineDatabase: is set to None, and :lines:=’all’, it will add every ion of every element up to Zinc. Default: None

Ionization_table

string, optional

For use with the :lines: keyword. Path to an appropriately formatted HDF5 table that can be used to compute the ion fraction as a function of density, temperature, metallicity, and redshift. When set to None, it uses the table specified in ~/.trident/config Default: None

Example

Generate a simple ray passing from the lower left corner to the upper right corner through some Gizmo dataset:

>>> import trident
>>> import yt
>>> ds = yt.load('path/to/dataset')
>>> ray = trident.make_simple_ray(ds,
... start_position=ds.domain_left_edge, end_position=ds.domain_right_edge,
... lines=['H', 'O', 'Mg II'])