

Trident Documentation

Trident is a Python package for creating synthetic absorption-line spectra
from astrophysical hydrodynamics simulations. It utilizes the yt package
to read in simulation datasets and extends it to provide realistic
synthetic observations appropriate for studies of the interstellar,
circumgalactic, and intergalactic media.

To avoid confusion, make sure you are viewing the correct documentation for
the version of Trident you are using:
stable [http://trident.readthedocs.io/en/stable] vs.
development [http://trident.readthedocs.io/en/latest]. For more
information, see Versions of Trident.

	Installation

	Annotated Example

	Adding Ion Fields

	Light Ray Generator

	Advanced Spectrum Generation

	Fitting Absorption Spectra

	Internals and Extensions

	Testing

	Frequently Asked Questions

	API Reference

	Citation

	Changelog

	Help

Installation

Follow these steps to successfully install Trident and its dependencies.

Versions of Trident

There are currently two versions of Trident: a stable version [http://trident.readthedocs.io/en/stable] and a development version [http://trident.readthedocs.io/en/latest]. Make sure you are reading the
correct docs for the version you are using!

The stable version is tried
and tested and easy to install with pip. The development version is actively
being updated with new features including superior support for particle-based
datasets (previously known as the demeshening). Note that the stable version
of trident requires the stable version of yt, and the development version of
trident requires the development version of yt, due to some
backwards-incompatible changes regarding particle-support in yt/trident.

Thus, the installation steps are slightly different for stable and development,
so pay attention in the steps below. Don’t worry if you want to change later,
you can always switch between the two versions easily enough by following the
directions in Uninstallation or Switching Code Versions.

Trident’s Major Dependency: yt

yt [http://yt-project.org] is a python-based software package for the
analysis and visualization of a different numerical datasets, including
astrophysical hydrodynamical data. yt is the primary dependency of Trident,
so you must install it before Trident will work. There are several methods
for installing yt, which are all discussed in detail in the yt installation
documentation [http://yt-project.org/doc/installing.html]. Use the one
that is appropriate for you. We find that using
conda [https://docs.conda.io/en/latest/] is the most streamlined and
reliable.

Installing the Stable Version of yt and Trident

Installation of the stable versions of yt and Trident is quite simple:

$ pip install yt
$ pip install trident

Now, you can try to run Trident for the first time, where it will download
some additional files. See Step 3: Get Ionization Table and Verify Installation, for more information:

$ python
>>> import trident

Follow the instructions to download the ion_balance table and then verify that
everything is working correctly. You should now be ready to do some
Step 4: Science!

Installing the Development Version of yt and Trident

Step 0: Ensure Conda is Installed

Conda is a package manager providing a clean, stand-alone installation of
python that is self-contained in its installation directory. yt & trident
require a modern installation of python to work. conda provides that
installation.

You can see if conda is already installed by running:

$ conda -h

If conda is installed, move to the next step. Otherwise install Mini-conda.

Use the appropriate conda install script for your architecture. We recommend
getting the latest version of conda for Python3 for your architecture here:
https://repo.continuum.io/miniconda/

For modern macs:

$ curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
$ bash Miniconda3-latest-MacOSX-x86_64.sh

For modern linux machines:

$ wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
$ bash Miniconda3-latest-Linux-x86_64.sh

At the end of the installation step, allow conda to add its installation
directory to the $PATH.

Step 1: Install yt

First you need yt’s major dependencies:

$ conda install numpy cython mpi4py git

Now you pull directly from the yt github repository to access
the up-to-date version of the source code and build it:

$ git clone https://github.com/yt-project/yt.git yt
$ cd yt
$ pip install -e .
$ cd ..

Note, you’ll also need a separate library,
yt_astro_analysis [https://github.com/yt-project/yt_astro_analysis.git],
to get some of the functionality necessary for Trident to work correctly:

$ git clone https://github.com/yt-project/yt_astro_analysis.git yt_astro_analysis
$ cd yt_astro_analysis
$ pip install -e .
$ cd ..

Step 2: Install Trident

Like yt, in order to get the development version of Trident, you must clone
and build the up-to-date source code from its repository:

$ git clone https://github.com/trident-project/trident.git trident
$ cd trident
$ pip install -e .
$ cd ..

Step 3: Get Ionization Table and Verify Installation

In order to calculate the ionization fractions for various ions from
density, temperature, metallicity fields, you will need an ionization table
datafile and a configuration file. Because this datafile can be large, it is
not packaged with the main source code. The first time you try to do anything
that requires it, Trident will attempt to automatically set this all up for
you with a series of interactive prompts. This step requires an internet
connection the first time you run it.

In addition, Trident provides a simple test function to verify that your
install is functioning correctly. This function not only tries to set up
your configuration and download your ion table file, but it will
create a simple one-zone dataset, generate a ray through it, and
create a spectrum from that ray. This should execute very quickly,
and if it succeeds it demonstrates that your installation has been totally
successful:

$ python
>>> import trident
>>> trident.verify()
...Series of Interactive Prompts...

If you cannot directly access the internet on this computer, or you lack write
access to your $HOME directory, or this step fails for any reason, please
follow our documentation on Manually Installing your Ionization Table.

Step 4: Science!

Congratulations, you’re now ready to use Trident! Please refer to the
documentation for how to use it with your data or with one of our sample
datasets. A good place to start is the
annotated example, and the example scripts found
in the source code [https://github.com/trident-project/trident/blob/main/examples].

Please join our mailing list or slack channel for announcements
and updates when new features are added to the code.

Manually Installing your Ionization Table

If for some reason you are unable to install the config file and ionization
table data automatically, you must set it up manually. When Trident runs,
it looks for a configuration file called config.tri in the
$HOME/.trident directory or alternatively in the current working
directory (for users lacking write access to their $HOME directories).
This configuration file is simple in that it tells Trident a few things about
your install including the location and filename of your desired ionization
table. Manually create a text file called config.tri with contents
following the form:

[Trident]
ion_table_dir = ~/.trident
ion_table_file = hm2012_hr.h5

To manually obtain an ion table datafile, download and gunzip one from:
http://trident-project.org/data/ion_table . While the config.tri file
needs to exist in your $HOME/.trident directory or in the working directory
when you import trident, the ion_table datafile can exist anywhere on the
file system. Just assure that the config file points to the proper location
and filename of the ion table datafile.

Now, to confirm everything is working properly, verify your installation
following Step 3: Get Ionization Table and Verify Installation. If this fails or you have additional problems,
please contact our mailing list.

Uninstallation or Switching Code Versions

Uninstallation of the Trident source code is easy. If you installed the
stable version of the code via pip, just run:

$ pip uninstall trident

If you installed the dev version of Trident, you’ll have to delete the source
as well:

$ pip uninstall trident
$ rm -rf <YOUR_PATH_TO_TRIDENT_REPO>

If you want to switch between the two stable and development versions, just
uninstall your version of the code as above, and then install the desired
version as described in Step 2: Install Trident

To fully remove the code from your system, remember to remove any ion table
datafiles you may have downloaded in your $HOME/.trident directory,
and follow the instructions for how to uninstall yt [http://yt-project.org/docs/dev/installing.html].

Updating to the Latest Version

If you want more recent features, you should periodically update your Trident
codebase.

Updating to the Latest Stable Release

If you installed the “stable” version of the code using pip, then
you can easily update your trident and yt installations:

$ pip install -U trident
$ yt update

Updating to the Latest Development Version

If you installed the “development” version of the code, it’s slightly more
involved:

$ cd <YOUR_PATH_TO_TRIDENT_REPO>
$ git pull origin main
$ pip install -e .
$ yt update

For more information on updating your yt installation, see the yt update
instructions [http://yt-project.org/docs/dev/installing.html#updating-yt-and-its-dependencies].

Annotated Example

The best way to get a feel for what Trident can do is to go through an
annotated example of its use.
This section will walk you through the steps necessary to
produce a synthetic spectrum based on simulation data and to view its path
through the parent dataset. The following example, available in the source
code itself [https://github.com/trident-project/trident/blob/main/examples/working_script.py],
can be applied to datasets from any of the different simulation codes that
Trident and yt support [http://yt-project.org/docs/dev/reference/code_support.html#code-support],
although it may require some tweaking of parameters for optimal performance.
If you want to recreate the following analysis with the
exact dataset used, it can be downloaded here [http://yt-project.org/data/].

The basic process for generating a spectrum and overplotting a sightline’s
trajectory through the dataset goes in three steps:

	Generate a LightRay from the simulation data
representing a sightline through the data.

	Define the desired spectrum features and use the LightRay to
create a corresponding synthetic spectrum.

	Create a projected image and overplot the path of the LightRay.

Simple LightRay Generation

A LightRay is a 1D object representing the path a ray of
light takes through a simulation volume on its way from some bright background
object to the observer. It records all of the gas fields it intersects along
the way for use in many tasks, including construction of a spectrum.

In order to generate a LightRay from your data, you need to first make sure
that you’ve imported both the yt and Trident packages, and
specify the filename of the dataset from which to extract the light ray:

import yt
import trident
fn = 'enzo_cosmology_plus/RD0009/RD0009'

We need to decide the trajectory that the LightRay will take
through our simulation volume. This arbitrary trajectory is specified with
coordinates in code length units (e.g. [x_start, y_start, z_start] to
[x_end, y_end, z_end]). Probably the simplest trajectory is cutting
diagonally from the origin of the simulation volume to its outermost corner
using the yt domain_left_edge and domain_right_edge attributes. Here
we load the dataset into yt to get access to these attributes:

ds = yt.load(fn)
ray_start = ds.domain_left_edge
ray_end = ds.domain_right_edge

Let’s define what lines or species we want to be added to our final spectrum.
In this case, we want to deposit all hydrogen, carbon, nitrogen, oxygen,
and magnesium lines to the resulting spectrum from the dataset:

line_list = ['H', 'C', 'N', 'O', 'Mg']

We can now generate the light ray using the make_simple_ray()
function by passing the dataset and the trajectory endpoints to it as well
as telling trident to save the resulting ray dataset to an HDF5 file. We
explicitly instruct trident to pull all necessary fields from the dataset
in order to be able to add the lines from our line_list:

ray = trident.make_simple_ray(ds,
 start_position=ray_start,
 end_position=ray_end,
 data_filename="ray.h5",
 lines=line_list)

The resulting ray is a LightRay object, consisting of a series
of arrays representing the different fields it probes in the original dataset along
its length. Each element in the arrays represents a different resolution element
along the path of the ray. The ray also possesses some special fields not originally
present in the original dataset:

	('gas', l') Location along the LightRay length from 0 to 1.

	('gas', 'dl') Pathlength of resolution element (not a true pathlength for particle-based codes)

	('gas', 'redshift') Cosmological redshift of resolution element

	('gas', 'redshift_dopp') Doppler redshift of resolution element

	('gas', 'redshift_eff') Effective redshift (combined cosmological and Doppler)

Like any dataset, you can see what fields are present on the ray by examining its
derived_field_list (e.g., print(ds.derived_field_list). If you want more ions
present on this ray than are currently shown, you can add them with
add_ion_fields (see: Adding Ion Fields).

This ray object is also saved to disk as an HDF5 file, which can later be loaded
into yt as a stand-alone dataset (e.g., ds = yt.load('ray.h5')).

Overplotting a LightRay’s Trajectory on a Projection

Here we create a projection of the density field along the x axis of the
dataset, and then overplot the path the LightRay takes through the simulation,
before saving it to disk. The annotate_ray() operation should work for
any volumentric plot, including slices, and off-axis plots:

p = yt.ProjectionPlot(ds, 'x', 'density')
p.annotate_ray(ray, arrow=True)
p.save('projection.png')

[image: _images/projection.png]

Calculating Column Densities

Perhaps we wish to know the total column density of a particular ion present along
this LightRay. This can easily be done by multiplying the desired
ion number density field by the pathlength field, dl, to yield an array of
column densities for each resolution element, and then summing them together:

column_density_HI = ray.r[('gas', 'H_p0_number_density')] * ray.r[('gas', 'dl')]
print('HI Column Density = %g' % column_density_HI.sum())

Spectrum Generation

Now that we have our LightRay we can use it to generate a spectrum.
To create a spectrum, we need to make a SpectrumGenerator
object defining our desired wavelength range and bin size. You can do this
by manually setting these features, or just using one of the presets for
an instrument. Currently, we have three pre-defined instruments, the G130M,
G160M, and G140L observing modes for the Cosmic Origins Spectrograph aboard
the Hubble Space Telescope: COS-G130M, COS-G160M, and COS-G140L.
Notably, instrument COS aliases to COS-G130M.

We then use this SpectrumGenerator object to make a raw
spectrum according to the intersecting fields it encountered in the
corresponding LightRay. We save this spectrum to disk, and
plot it:

sg = trident.SpectrumGenerator('COS-G130M')
sg.make_spectrum(ray, lines=line_list)
sg.save_spectrum('spec_raw.txt')
sg.plot_spectrum('spec_raw.png')

[image: _images/spec_raw.png]
From here we can do some post-processing to the spectrum to include
additional features that would be present in an actual observed spectrum.
We add a background quasar spectrum, a Milky Way foreground, apply the
COS line spread function, and add gaussian noise with SNR=30:

sg.add_qso_spectrum()
sg.add_milky_way_foreground()
sg.apply_lsf()
sg.add_gaussian_noise(30)

Finally, we use plot and save the resulting spectrum to disk:

sg.save_spectrum('spec_final.txt')
sg.plot_spectrum('spec_final.png')

which produces:

[image: _images/spec_final.png]
To create more complex or ion-specific spectra, refer to Advanced Spectrum Generation.

Compound LightRays

In some cases (e.g. studying redshift evolution of the IGM), it may be
desirable to create a LightRay that covers a range in redshift
that is larger than the domain width of a single simulation snaptshot.
Rather than simply sampling the same dataset repeatedly, which is
inherently unphysical since large scale structure evolves with cosmic
time, Trident allows the user to create a ray that samples multiple
datasets from different redshifts to produce a much longer ray that is
continuous in redshift space. This is done by using the
make_compound_ray() function. This function is
similar to the previously mentioned make_simple_ray()
function, but instead of accepting an individual dataset, it takes a
simulation parameter file, the associated simulation type, and the
desired range in redshift to be probed by the ray, while still
allowing the user to specify the same sort of line list as before::

fn = 'enzo_cosmology_plus/AMRCosmology.enzo'
ray = trident.make_compound_ray(fn, simulation_type='Enzo',
 near_redshift=0.0, far_redshift=0.1,
 lines=line_list)

In this example, we’ve created a ray from an Enzo simulation (the same
one used above) that goes from z = 0 to z = 0.1. This ray can now be
used to generate spectra in the exact same ways as before.

Obviously, there need to be sufficient simulation outputs over the desired
redshift range of the compound ray in order to have continuous sampling.
To assure adequate simulation output frequency for this, one can use yt’s
plan_cosmology_splice() function. See an example of its usage in
the yt_astro_analysis documentation [https://yt-astro-analysis.readthedocs.io/en/latest/planning_cosmology_simulations.html].

We encourage you to look at the detailed documentation for
make_compound_ray() in the API Reference
section to understand how to control how the ray itself is constructed
from the available data.

Note

The compound ray functionality has only been implemented for the
Enzo and Gadget simulation codes (and Gadget’s derivatives including
Gizmo and AREPO). If you would like to help us
implement this functionality for your simulation code, please contact
us about this on the mailing list.

Adding Ion Fields

In addition to being able to create absorption spectra,
Trident can be used to postprocess datasets to add fields for ions not
explicitly tracked in the simulation. These can later be analyzed
using the standard yt analysis packages. This page provides some examples
as to how these fields can be generated and analyzed.

How does it work?

When you installed Trident, you were forced to download an ion table, a
data table consisting of dimensions in density, temperature, and redshift.
This ion table was constructed by running many independent Cloudy instances
to approximate the ionization states of all ionic species of the first 30
elements. The ionic species were calculated assuming collisional
ionization equilibrium based on different density and
temperature values and photoionization from a metagalactic ultraviolet
background unique to each ion table. The currently preferred ion table
uses the Haardt Madau 2012 model. You can change your default
ionization model by changing your config file (see: Manually Installing your Ionization Table), or
by specifying it directly in the ionization_table keywords of the following
functions.

By following the process below, you will add different ion fields to your
dataset based on the above assumptions using the dataset’s redshift, and
the values of density, temperature, and metallicity found for each gas parcel
in your dataset.

Generating species fields

As always, we first need to import yt and Trident and then we load up a
dataset:

import yt
import trident
fn = 'enzo_cosmology_plus/RD0009/RD0009'
ds = yt.load(fn)

To add ion fields we use the add_ion_fields function. This
will add fields for whatever ions we specify in the form of:

	Ion fraction field. e.g. Mg_p1_ion_fraction

	Number density field. e.g. Mg_p1_number_density

	Density field. e.g. Mg_p1_density

	Mass field. e.g. Mg_p1_mass

Note

Trident follows yt’s naming convention [http://ytep.readthedocs.io/en/latest/YTEPs/YTEP-0003.html#molecular-and-atomic-species-names]
for atomic, molecular, and ionic species fields. In short, the ionic
prefix consists of the element and the number of times ionized it is:
e.g. H I = H_p0, Mg II = Mg_p1, O VI = O_p5 (p is for plus).

Let’s add fields for O VI (five-times-ionized oxygen):

trident.add_ion_fields(ds, ions=['O VI'])

To show how one can use this newly generated field, we’ll make a projection
of the O VI number density field to show its column density map:

proj = yt.ProjectionPlot(ds, "z", "O_p5_number_density")
proj.save()

which produces:

[image: _images/RD0009_Projection_z_O_p5_number_density.png]
We can similarly create a phase plot to show where the O VI mass lives as a
function of density and temperature:

we need to create a data object from the dataset to make a phase plot
ad = ds.all_data()
phase = yt.PhasePlot(ad, "density", "temperature", ["O_p5_mass"],
 weight_field="O_p5_mass", fractional=True)
phase.save()

resulting in:

[image: _images/RD0009_2d-Profile_density_temperature_O_p5_mass.png]

Light Ray Generator

The LightRay is the one-dimensional object representing
the pencil beam of light traveling from the source to the observer. Light
rays can stack multiple datasets together to span a redshift interval
larger than the simulation box.

[image: _images/lightray.png]
The preferred manner for generating rays uses the
make_simple_ray() for
LightRay ‘s spanning a single dataset
and
make_compound_ray() for
LightRay ‘s spanning multiple datasets.

Simple Rays

For a simple ray, you specify the dataset to use, the start and end coordinates
of your 1D line, and then optionally any additional fields you want stored on the
LightRay or optionally any ionic species you will want to
use with this ray:

import yt
import trident
ds = yt.load('FIRE_M12i_ref11/snapshot_600.hdf5')
ray = trident.make_simple_ray(ds,
 start_position=[0, 0, 0],
 end_position=[60000, 60000, 60000],
 lines=['H', 'Mg', 'O'],
 fields=[('gas', 'temperature'), ('gas', 'metallicity')])

Compound Rays

For a compound ray, you specify the simulation parameter filename, the simulation code,
the start and end redshifts of the LightRay, and optionally
any additional fields you want stored or any ionic species you will want to use with
this ray:

import trident
fn = 'enzo_cosmology_plus/AMRCosmology.enzo'
ray = trident.make_compound_ray(fn,
 simulation_type='Enzo',
 near_redshift=0.0,
 far_redshift=0.1,
 lines=['H', 'Mg', 'O'],
 fields=[('gas', 'temperature'), ('gas', 'metallicity')])

Ray Fields

The resulting ray is a LightRay object, consisting of a series
of arrays representing the different fields it probes in the original dataset along
its length. Each element in the arrays represents a different resolution element
along the path of the ray. The ray also possesses some special fields not originally
present in the original dataset:

	('gas', 'l') Location along the LightRay length from 0 to 1.

	('gas', 'dl') Pathlength of resolution element (not a true pathlength for particle-based codes)

	('gas', 'redshift') Cosmological redshift of resolution element

	('gas', 'redshift_dopp') Doppler redshift of resolution element

	('gas', 'redshift_eff') Effective redshift (combined cosmological and Doppler)

Like any dataset, you can see what fields are present on the ray by examining its
derived_field_list (e.g., print(ds.derived_field_list). If you want more ions
present on this ray than are currently available, you can add them with
add_ion_fields (see: Adding Ion Fields).

This ray object is also saved to disk as an HDF5 file, which can later be loaded
into yt as a stand-alone dataset. By default it is saved as ray.h5, but you
can specify other filenames when you create it. To later access this file and
load it into yt, load it like any other dataset: ds = yt.load('ray.h5').

Calculating Column Densities

Perhaps we wish to know the total column density of a particular ion present along
this LightRay. This can easily be done by multiplying the desired
ion number density field by the pathlength field, dl, to yield an array of
column densities for each resolution element, and then summing them together:

column_density_HI = ray.r[('gas', 'H_p0_number_density')] * ray.r[('gas', 'dl')]
print('HI Column Density = %g' % column_density_HI.sum())

Examining LightRay Solution Data

When a LightRay is created, it saves the source information
from the dataset that produced it in a dictionary, including its filename, its start
and end points in the original dataset, etc. This is all accessible when
you load up the LightRay again through the
light_ray_solution:

import yt
ds = yt.load('ray.h5')
print(ds.light_ray_solution)

[{'end': unyt_array([1., 1., 1.], 'unitary'),
'filename': 'snapshot_600.hdf5',
'redshift': 0.05,
'start': unyt_array([0.48810148, 0.51748806, 0.54316002], 'unitary'),
'traversal_box_fraction': unyt_quantity(0.83878521, 'unitary'),
'unique_identifier': '1436307563512020127'}]

Useful Tips for Making Compound LightRays

Below are some tips that may come in handy for creating proper LightRays. For full
use of these, you may have to create the LightRay
by hand instead of using the make_compound_ray() helper
function.

How many snapshots do I need for a compound ray?

The number of snapshots required to traverse some redshift interval depends
on the simulation box size and cosmological parameters. Before running an
expensive simulation only to find out that you don’t have enough outputs
to span the redshift interval you want, have a look at the guide
Planning Simulations for LightCones or LightRays [https://yt-astro-analysis.readthedocs.io/en/latest/planning_cosmology_simulations.html].
The functionality described there will allow you to calculate the precise
number of snapshots and specific redshifts at which they should be written.

My snapshots are too far apart!

The max_box_fraction keyword, provided when creating the Lightray,
allows the user to control how long a ray segment can be for an
individual dataset. Be default, the LightRay generator will try to
make segments no longer than the size of the box to avoid sampling the
same structures more than once. However, this can be increased in the
case that the redshift interval between datasets is longer than the
box size. Increasing this value should be done with caution as longer
ray segments run a greater risk of coming back to somewhere near their
original position.

What if I have a zoom-in simulation?

A zoom-in simulation has a high resolution region embedded within a
larger, low resolution volume. In this type of simulation, it is likely
that you will want the ray segments to stay within the high resolution
region. To do this, you must first specify the size of the high
resolution region when creating the LightRay using the
max_box_fraction keyword. This will make sure that
the calculation of the spacing of the segment datasets only takes into
account the high resolution region and not the full box size. If your
high resolution region is not a perfect cube, specify the smallest side.
Then, in the call to
make_light_ray(),
use the left_edge and right_edge keyword arguments to specify the
precise location of the high resolution region.

Technically speaking, the ray segments should no longer be periodic
since the high resolution region is only a sub-volume within the
larger domain. To make the ray segments non-periodic, set the
periodic keyword to False. The LightRay generator will continue
to generate randomly oriented segments until it finds one that fits
entirely within the high resolution region. If you have a high
resolution region that can move and change shape slightly as structure
forms, use the min_level keyword to mandate that the ray segment only
pass through cells that are refined to at least some minimum level.

If the size of the high resolution region is not large enough to
span the required redshift interval, the LightRay generator can
be configured to treat the high resolution region as if it were
periodic simply by setting the periodic keyword to True. This
option should be used with caution as it will lead to the creation
of disconnected ray segments within a single dataset.

I want a continous trajectory over the entire ray.

Set the minimum_coherent_box_fraction keyword argument to a very
large number, like infinity (numpy.inf).

Advanced Spectrum Generation

In addition to generating a basic spectrum as demonstrated in
the annotated example, the user can also
customize the generated spectrum in a variety of ways. One can choose which
spectral lines to deposit or choose different settings for the characteristics
of the spectrograph, and more. The following code goes through the process of
setting these properties and shows what impact it has on resulting spectra.

For this demonstation, we’ll be using a light ray passing through a very dense
disk of gas, taken from the initial output from the AGORA isolated box
simulation using ART-II in Kim et al. (2016) [http://adsabs.harvard.edu/abs/2016ApJ...833..202K].
If you’d like to try to reproduce the spectra included below you can get
the LightRay file from the Trident sample data using the
command:

$ wget http://trident-project.org/data/sample_data/ART-II_ray.h5

Now, we’ll load up the ray using yt:

import yt
import trident
ray = yt.load('ART-II_ray.h5')

Setting the spectrograph

Let’s set the characteristics of the spectrograph we will use to create
this spectrum. We can either choose the wavelength range and resolution
and line spread function explicitly, or we can choose one of the preset
instruments that come with Trident. To list the presets and their respective
values, use this command:

print(trident.valid_instruments)

Currently, we have three settings for the Cosmic Origins Spectrograph [http://www.stsci.edu/hst/cos/design/gratings/] available:
COS-G130M, COS-G140L, and COS-G160M, but we plan to add more
instruments soon. To use one of them, we just use the name string in the
SpectrumGenerator class:

sg = trident.SpectrumGenerator('COS-G130M')

But instead, let’s just set our wavelength range manually
from 1150 angstroms to 1250 angstroms with a resolution of 0.01 angstroms:

sg = trident.SpectrumGenerator(lambda_min=1150, lambda_max=1250, dlambda=0.01)

From here, we can pass the ray to the
SpectrumGenerator object to use in the
construction of a spectrum.

Choosing what absorption features to include

There is a LineDatabase class that controls which
spectral lines you can add to your spectrum. Trident provides you with a default
LineDatabase with 213 spectral lines commonly used
in CGM and IGM studies, but you can create your own
LineDatabase with different lines. To see a list of
all the lines included in the default line list:

ldb = trident.LineDatabase('lines.txt')
print(ldb)

which is reading lines from the ‘lines.txt’ file present in the
data directory (see where is Trident installed?)
We can specify any subset of these spectral lines to use when creating the
spectrum from our master line list. So if you’re interested in just looking
at neutral hydrogen lines in your spectrum, you can see what lines will be
included with the command:

print(ldb.parse_subset('H I'))

As a first pass, we’ll create a spectrum that just include lines produced
by hydrogen:

sg.make_spectrum(ray, lines=['H'])
sg.plot_spectrum('spec_H.png')

The resulting spectrum contains a nice, big Lyman-alpha feature.

[image: _images/spec_H.png]
If, instead, we want to shows the lines that would be in our spectral range
due to carbon, nitrogen, and oxygen, we can do the following:

sg.make_spectrum(ray, lines=['C', 'N', 'O'])
sg.plot_spectrum('spec_CNO.png')

And now we have:

[image: _images/spec_CNO.png]
We can see how these two spectra combined when we include all of the same
lines:

sg.make_spectrum(ray, lines=['H', 'C', 'N', 'O'])
sg.plot_spectrum('spec_HCNO.png')

which gives:

[image: _images/spec_HCNO.png]
We can get even more specific, by generating a spectrum that only contains
lines due to a single ion species. For example, we might just want the
lines from four-times-ionized nitrogen, N V:

sg.make_spectrum(ray, lines=['N V'])
sg.plot_spectrum('spec_NV.png')

This spectrum only shows a couple of small lines on the right hand side.

[image: _images/spec_NV.png]
But if that level of specificity isn’t enough, we can request individual lines:

sg.make_spectrum(ray, lines=['C I 1193', 'C I 1194'])
sg.plot_spectrum('spec_CI_1193_1194.png')

And we end up with:

[image: _images/spec_CI_1193_1194.png]
Or we can just include all of the available lines in our
LineDatabase with:

sg.make_spectrum(ray, lines='all')
sg.plot_spectrum('spec_all.png')

Giving us:

[image: _images/spec_all.png]
To understand how to further customize your spectra, look at the documentation
for the SpectrumGenerator and
LineDatabase classes and other
API documentation.

Setting Wavelength Bounds Automatically

If you are interested in creating a spectrum that contains all possible
absorption features for a given set of lines, the
SpectrumGenerator can be configured to
automatically enlarge the wavelength window until all absorption is captured. This is
done by setting the lambda_min and lambda_max keywords to ‘auto’
and specifying a bin size with the dlambda keyword:

sg = trident.SpectrumGenerator(lambda_min='auto', lambda_max='auto',
 dlambda=0.01)
sg.make_spectrum("ray.h5", lines=['H I 1216'])
sg.plot_spectrum('spec_auto.png')

[image: _images/spec_auto.png]
Note, the above example is for a different ray than is used in the
previous examples. The resulting spectrum will minimally contain all
absorption present in the ray. This should be used with care when depositing
multiple lines as this can lead to an extremely large spectrum.

Making Spectra in Velocity Space

Trident can be configured to create spectra in velocity space instead of
wavelength space where velocity corresponds to the velocity offset from
the rest wavelength of a given line. This can be done by providing the
keyword bin_space='velocity' to the
SpectrumGenerator:

sg = trident.SpectrumGenerator(lambda_min='auto', lambda_max='auto',
 dlambda=1., bin_space='velocity')
sg.make_spectrum("ray.h5", lines=['H I 1216'])
sg.plot_spectrum('spec_velocity.png')

[image: _images/spec_velocity.png]
When working in velocity space, limits and bin sizes should be provided in km/s.
If more than one transition is added to the spectrum (e.g., Ly-a and Ly-b), the
zero point will correspond to the rest wavelength of the first transition added.

Making Spectra from a Subset of a Ray

The situation may arise where you want to see the spectrum that is generated
by only a portion of the gas along a line of sight. For example, you may want to
see the spectrum of only the cold gas. This can be done by creating a
YTCutRegion from a loaded ray
dataset:

import trident
import yt

ds = yt.load('ray.h5')
all_data = ds.all_data()
cold_gas = ds.cut_region(all_data, 'obj["gas", "temperature"] < 10000')

sg = trident.SpectrumGenerator(lambda_min=1200, lambda_max=1225,
 dlambda=0.01)

spectrum of entire ray
sg.make_spectrum(all_data, lines=['H I 1216'])
all_spectrum = sg.flux_field[:]

spectrum of cold gas
sg.make_spectrum(cold_gas, lines=['H I 1216'])
cold_spectrum = sg.flux_field[:]

trident.plot_spectrum(sg.lambda_field, [all_spectrum, cold_spectrum],
 label=['all gas', 'cold gas'], stagger=None)

[image: _images/spec_cutregion.png]

Fitting Absorption Spectra

This tool can be used to fit absorption spectra, particularly those
generated using Trident.
For more details on its uses and implementation please see (Egan et al. (2013) [http://arxiv.org/abs/1307.2244]). If you find this tool useful we
encourage you to cite accordingly.

Loading an Absorption Spectrum

To load an absorption spectrum created by
SpectrumGenerator,
specify the output file name. It is advisable to use either an .h5
or .fits file, rather than an ascii file to save the spectrum as rounding
errors produced in saving to a ascii file will negatively impact fit quality.

f = h5py.File('spectrum.h5')
wavelength = f["wavelength"][:]
flux = f['flux'][:]
f.close()

Specifying Species Properties

Before fitting a spectrum, you must specify the properties of all the
species included when generating the spectrum.

The physical properties needed for each species are the rest wavelength,
f-value, gamma value, and atomic mass. These will be the same values
as used to generate the initial absorption spectrum. These values are
given in list form as some species generate multiple lines (as in the
OVI doublet). The number of lines is also specified on its own.

To fine tune the fitting procedure and give results in a minimal
number of optimizing steps, we specify expected maximum and minimum
values for the column density, doppler parameter, and redshift. These
values can be well outside the range of expected values for a typical line
and are mostly to prevent the algorithm from fitting to negative values
or becoming numerically unstable.

Common initial guesses for doppler parameter and column density should also
be given. These values will not affect the specific values generated by
the fitting algorithm, provided they are in a reasonably appropriate range
(ie: within the range given by the max and min values for the parameter).

For a spectrum containing both the H Lyman-alpha line and the OVI doublet,
we set up a fit as shown below.

HI_parameters = {'name':'HI',
 'f': [.4164],
 'Gamma':[6.265E8],
 'wavelength':[1215.67],
 'numLines':1,
 'maxN': 1E22, 'minN':1E11,
 'maxb': 300, 'minb':1,
 'maxz': 6, 'minz':0,
 'init_b':30,
 'init_N':1E14}

OVI_parameters = {'name':'OVI',
 'f':[.1325,.06580],
 'Gamma':[4.148E8,4.076E8],
 'wavelength':[1031.9261,1037.6167],
 'numLines':2,
 'maxN':1E17,'minN':1E11,
 'maxb':300, 'minb':1,
 'maxz':6, 'minz':0,
 'init_b':20,
 'init_N':1E12}

speciesDicts = {'HI':HI_parameters,'OVI':OVI_parameters}

Generating Fit of Spectrum

After loading a spectrum and specifying the properties of the species
used to generate the spectrum, an appropriate fit can be generated.

from trident.absorption_spectrum.absorption_spectrum_fit import generate_total_fit

orderFits = ['OVI','HI']

fitted_lines, fitted_flux = generate_total_fit(wavelength,
 flux, orderFits, speciesDicts)

The orderFits variable is used to determine in what order the species
should be fitted. This may affect the results of the resulting fit,
as lines may be fit as an incorrect species. For best results, it is
recommended to fit species the generate multiple lines first, as a fit
will only be accepted if all of the lines are fit appropriately using
a single set of parameters. At the moment no cross correlation between
lines of different species is performed.

The parameters of the lines that are needed to fit the spectrum are contained
in the fitted_lines variable. Each species given in orderFits will
be a key in the fitted_lines dictionary. The entry for each species
key will be another dictionary containing entries for ‘N’,’b’,’z’, and
‘group#’ which are the column density, doppler parameter, redshift,
and associate line complex respectively. The i th line
of a given species is then given by the parameters N[i], b[i],
and z[i] and is part of the same complex (and was fitted at the same time)
as all lines with the same group number as group#[i].

The fitted_flux is an ndarray of the same size as flux and
wavelength that contains the cumulative absorption spectrum generated
by the lines contained in fitted_lines.

Saving a Spectrum Fit

Saving the results of a fitted spectrum for further analysis is
accomplished automatically using the h5 file format. A group
is made for each species that is fit, and each species group has
a group for the corresponding N, b, z, and group# values.

Procedure for Generating Fits

To generate a fit for a spectrum
generate_total_fit()
is called.
This function controls the identification of line complexes, the fit
of a series of absorption lines for each appropriate species, checks of
those fits, and returns the results of the fits.

Finding Line Complexes

Line complexes are found using the _find_complexes
function. The process by which line complexes are found involves walking
through the array of flux in order from minimum to maximum wavelength, and
finding series of spatially contiguous cells whose flux is less than some
limit. These regions are then checked in terms of an additional flux limit
and size. The bounds of all the passing regions are then listed and returned.
Those bounds that cover an exceptionally large region of wavelength space will
be broken up if a suitable cut point is found. This method is only appropriate
for noiseless spectra.

The optional parameter complexLim (default = 0.999), controls the limit
that triggers the identification of a spatially contiguous region of flux
that could be a line complex. This number should be very close to 1 but not
exactly equal. It should also be at least an order of magnitude closer to 1
than the later discussed fitLim parameter, because a line complex where
the flux of the trough is very close to the flux of the edge can be incredibly
unstable when optimizing.

The fitLim parameter controls what is the maximum flux that the trough
of the region can have and still be considered a line complex. This
effectively controls the sensitivity to very low column absorbers. Default
value is fitLim = 0.99. If a region is identified where the flux of the
trough is greater than this value, the region is simply ignored.

The minLength parameter controls the minimum number of array elements
that an identified region must have. This value must be greater than or
equal to 3 as there are a minimum of 3 free parameters that must be fit.
Default is minLength = 3.

The maxLength parameter controls the maximum number of array elements
that an identified region can have before it is split into separate regions.
Default is maxLength = 1000. This should be adjusted based on the
resolution of the spectrum to remain appropriate. The value correspond
to a wavelength of roughly 50 angstroms.

The splitLim parameter controls how exceptionally large regions are split.
When such a region is identified by having more array elements than
maxLength, the point of maximum flux (or minimum absorption) in the
middle two quartiles is identified. If that point has a flux greater than
or equal to splitLim, then two separate complexes are created: one from
the lower wavelength edge to the minimum absorption point and the other from
the minimum absorption point to the higher wavelength edge. The default
value is splitLim =.99, but it should not drastically affect results, so
long as the value is reasonably close to 1.

Fitting a Line Complex

After a complex is identified, it is fitted by iteratively adding and
optimizing a set of Voigt Profiles for a particular species until the
region is considered successfully fit. The optimizing is accomplished
using scipy’s least squares optimizer. This requires an initial estimate
of the parameters to be fit (column density, b-value, redshift) for each
line.

Each time a line is added, the guess of the parameters is based on
the difference between the line complex and the fit so far. For the first line
this just means the initial guess is based solely on the flux of the line
complex. The column density is given by the initial column density given
in the species parameters dictionary. If the line is saturated (some portion
of the flux with a value less than .1) than the larger initial column density
guess is chosen. If the flux is relatively high (all values >.9) than the
smaller initial guess is given. These values are chosen to make optimization
faster and more stable by being closer to the actual value, but the final
results of fitting should not depend on them as they merely provide a
starting point.

After the parameters for a line are optimized for the first time, the
optimized parameters are then used for the initial guess on subsequent
iterations with more lines.

The complex is considered successfully fit when the sum of the squares of
the difference between the flux generated from the fit and the desired flux
profile is less than errBound. errBound is related to the optional
parameter to
generate_total_fit()
maxAvgError by the number of array elements in the region such that
errBound = number of elements * maxAvgError.

There are several other conditions under which the cycle of adding and
optimizing lines will halt. If the error of the optimized fit from adding
a line is an order of magnitude worse than the error of the fit without
that line, then it is assumed that the fitting has become unstable and
the latest line is removed. Lines are also prevented from being added if
the total number of lines is greater than the number of elements in the flux
array being fit divided by 3. This is because there must not be more free
parameters in a fit than the number of points to constrain them.

Checking Fit Results

After an acceptable fit for a region is determined, there are several steps
the algorithm must go through to validate the fits.

First, the parameters must be in a reasonable range. This is a check to make
sure that the optimization did not become unstable and generate a fit that
diverges wildly outside the region where the fit was performed. This way, even
if particular complex cannot be fit, the rest of the spectrum fitting still
behaves as expected. The range of acceptability for each parameter is given
in the species parameter dictionary. These are merely broad limits that will
prevent numerical instability rather than physical limits.

In cases where a single species generates multiple lines (as in the OVI
doublet), the fits are then checked for higher wavelength lines. Originally
the fits are generated only considering the lowest wavelength fit to a region.
This is because we perform the fitting of complexes in order from the lowest
wavelength to the highest, so any contribution to a complex being fit must
come from the lower wavelength as the higher wavelength contributions would
already have been subtracted out after fitting the lower wavelength.

Saturated Lyman Alpha Fitting Tools

In cases where a large or saturated line (there exists a point in the complex
where the flux is less than .1) fails to be fit properly at first pass, a
more robust set of fitting tools is used to try and remedy the situation.
The basic approach is to simply try a much wider range of initial parameter
guesses in order to find the true optimization minimum, rather than getting
stuck in a local minimum. A set of hard coded initial parameter guesses
for Lyman alpha lines is given by the _get_test_lines function
Also included in these parameter guesses is an an initial guess of a high
column cool line overlapping a lower column warm line, indictive of a
broad Lyman alpha (BLA) absorber.

Internals and Extensions

These internal classes and related extensions used to be part of
yt [http://yt-project.org/] but are now contained within Trident.
The internal classes are documented below and can be used independently,
but the primary Trident interfaces outlined in the main documentation are
recommended.

Internal Classes

	Light Ray Generator

	AbsorptionSpectrum

Extensions

	Fitting Absorption Spectra

Light Ray Generator

The LightRay is the one-dimensional object representing
the pencil beam of light traveling from the source to the observer. Light
rays can stack multiple datasets together to span a redshift interval
larger than the simulation box.

[image: _images/lightray.png]
The preferred manner for generating rays uses the
make_simple_ray() for
LightRay ‘s spanning a single dataset
and
make_compound_ray() for
LightRay ‘s spanning multiple datasets.

Simple Rays

For a simple ray, you specify the dataset to use, the start and end coordinates
of your 1D line, and then optionally any additional fields you want stored on the
LightRay or optionally any ionic species you will want to
use with this ray:

import yt
import trident
ds = yt.load('FIRE_M12i_ref11/snapshot_600.hdf5')
ray = trident.make_simple_ray(ds,
 start_position=[0, 0, 0],
 end_position=[60000, 60000, 60000],
 lines=['H', 'Mg', 'O'],
 fields=[('gas', 'temperature'), ('gas', 'metallicity')])

Compound Rays

For a compound ray, you specify the simulation parameter filename, the simulation code,
the start and end redshifts of the LightRay, and optionally
any additional fields you want stored or any ionic species you will want to use with
this ray:

import trident
fn = 'enzo_cosmology_plus/AMRCosmology.enzo'
ray = trident.make_compound_ray(fn,
 simulation_type='Enzo',
 near_redshift=0.0,
 far_redshift=0.1,
 lines=['H', 'Mg', 'O'],
 fields=[('gas', 'temperature'), ('gas', 'metallicity')])

Ray Fields

The resulting ray is a LightRay object, consisting of a series
of arrays representing the different fields it probes in the original dataset along
its length. Each element in the arrays represents a different resolution element
along the path of the ray. The ray also possesses some special fields not originally
present in the original dataset:

	('gas', 'l') Location along the LightRay length from 0 to 1.

	('gas', 'dl') Pathlength of resolution element (not a true pathlength for particle-based codes)

	('gas', 'redshift') Cosmological redshift of resolution element

	('gas', 'redshift_dopp') Doppler redshift of resolution element

	('gas', 'redshift_eff') Effective redshift (combined cosmological and Doppler)

Like any dataset, you can see what fields are present on the ray by examining its
derived_field_list (e.g., print(ds.derived_field_list). If you want more ions
present on this ray than are currently available, you can add them with
add_ion_fields (see: Adding Ion Fields).

This ray object is also saved to disk as an HDF5 file, which can later be loaded
into yt as a stand-alone dataset. By default it is saved as ray.h5, but you
can specify other filenames when you create it. To later access this file and
load it into yt, load it like any other dataset: ds = yt.load('ray.h5').

Calculating Column Densities

Perhaps we wish to know the total column density of a particular ion present along
this LightRay. This can easily be done by multiplying the desired
ion number density field by the pathlength field, dl, to yield an array of
column densities for each resolution element, and then summing them together:

column_density_HI = ray.r[('gas', 'H_p0_number_density')] * ray.r[('gas', 'dl')]
print('HI Column Density = %g' % column_density_HI.sum())

Examining LightRay Solution Data

When a LightRay is created, it saves the source information
from the dataset that produced it in a dictionary, including its filename, its start
and end points in the original dataset, etc. This is all accessible when
you load up the LightRay again through the
light_ray_solution:

import yt
ds = yt.load('ray.h5')
print(ds.light_ray_solution)

[{'end': unyt_array([1., 1., 1.], 'unitary'),
'filename': 'snapshot_600.hdf5',
'redshift': 0.05,
'start': unyt_array([0.48810148, 0.51748806, 0.54316002], 'unitary'),
'traversal_box_fraction': unyt_quantity(0.83878521, 'unitary'),
'unique_identifier': '1436307563512020127'}]

Useful Tips for Making Compound LightRays

Below are some tips that may come in handy for creating proper LightRays. For full
use of these, you may have to create the LightRay
by hand instead of using the make_compound_ray() helper
function.

How many snapshots do I need for a compound ray?

The number of snapshots required to traverse some redshift interval depends
on the simulation box size and cosmological parameters. Before running an
expensive simulation only to find out that you don’t have enough outputs
to span the redshift interval you want, have a look at the guide
Planning Simulations for LightCones or LightRays [https://yt-astro-analysis.readthedocs.io/en/latest/planning_cosmology_simulations.html].
The functionality described there will allow you to calculate the precise
number of snapshots and specific redshifts at which they should be written.

My snapshots are too far apart!

The max_box_fraction keyword, provided when creating the Lightray,
allows the user to control how long a ray segment can be for an
individual dataset. Be default, the LightRay generator will try to
make segments no longer than the size of the box to avoid sampling the
same structures more than once. However, this can be increased in the
case that the redshift interval between datasets is longer than the
box size. Increasing this value should be done with caution as longer
ray segments run a greater risk of coming back to somewhere near their
original position.

What if I have a zoom-in simulation?

A zoom-in simulation has a high resolution region embedded within a
larger, low resolution volume. In this type of simulation, it is likely
that you will want the ray segments to stay within the high resolution
region. To do this, you must first specify the size of the high
resolution region when creating the LightRay using the
max_box_fraction keyword. This will make sure that
the calculation of the spacing of the segment datasets only takes into
account the high resolution region and not the full box size. If your
high resolution region is not a perfect cube, specify the smallest side.
Then, in the call to
make_light_ray(),
use the left_edge and right_edge keyword arguments to specify the
precise location of the high resolution region.

Technically speaking, the ray segments should no longer be periodic
since the high resolution region is only a sub-volume within the
larger domain. To make the ray segments non-periodic, set the
periodic keyword to False. The LightRay generator will continue
to generate randomly oriented segments until it finds one that fits
entirely within the high resolution region. If you have a high
resolution region that can move and change shape slightly as structure
forms, use the min_level keyword to mandate that the ray segment only
pass through cells that are refined to at least some minimum level.

If the size of the high resolution region is not large enough to
span the required redshift interval, the LightRay generator can
be configured to treat the high resolution region as if it were
periodic simply by setting the periodic keyword to True. This
option should be used with caution as it will lead to the creation
of disconnected ray segments within a single dataset.

I want a continous trajectory over the entire ray.

Set the minimum_coherent_box_fraction keyword argument to a very
large number, like infinity (numpy.inf).

AbsorptionSpectrum

For documentation on the main interface to spectrum creation in Trident,
see Spectrum Generation.

The AbsorptionSpectrum
is the internal class for creating absorption spectra in Trident from
LightRay objects. The
AbsorptionSpectrum
and its workhorse method
make_spectrum()
return two arrays, one with wavelengths, the other with the normalized
flux values at each of the wavelength values. It can also output a text file
listing all important lines.

Method for Creating Absorption Spectra

Once a LightRay
has been created traversing a dataset using the Light Ray Generator,
a series of arrays store the various fields of the gas parcels (represented
as cells) intersected along the ray.
AbsorptionSpectrum
steps through each element of the
LightRay’s
arrays and calculates the column density for desired ion by multiplying its
number density with the path length through the cell. Using these column
densities along with temperatures to calculate thermal broadening, voigt
profiles are deposited on to a featureless background spectrum. By default,
the peculiar velocity of the gas is included as a doppler redshift in addition
to any cosmological redshift of the data dump itself.

Subgrid Deposition

For features not resolved (i.e. possessing narrower width than the spectral
resolution),
AbsorptionSpectrum
performs subgrid deposition. The subgrid deposition algorithm creates a number
of smaller virtual bins, by default the width of the virtual bins is 1/10th
the width of the spectral feature. The Voigt profile is then deposited
into these virtual bins where it is resolved, and then these virtual bins
are numerically integrated back to the resolution of the original spectral bin
size, yielding accurate equivalent widths values.
AbsorptionSpectrum
informs the user how many spectral features are deposited in this fashion.

Creating an Absorption Spectrum

Initialization

To instantiate an
AbsorptionSpectrum
object, the arguments required are the
minimum and maximum wavelengths (assumed to be in Angstroms), and the number
of wavelength bins to span this range (including the endpoints)

from trident.absorption_spectrum.absorption_spectrum import AbsorptionSpectrum

sp = AbsorptionSpectrum(900.0, 1800.0, 10001)

Adding Features to the Spectrum

Absorption lines and continuum features can then be added to the spectrum.
To add a line, you must know some properties of the line: the rest wavelength,
f-value, gamma value, and the atomic mass in amu of the atom. That line must
be tied in some way to a field in the dataset you are loading, and this field
must be added to the LightRay object when it is created. Below, we will
add the H Lyman-alpha line, which is tied to the neutral hydrogen field
(‘H_p0_number_density’).

my_label = 'HI Lya'
field = 'H_p0_number_density'
wavelength = 1215.6700 # Angstroms
f_value = 4.164E-01
gamma = 6.265e+08
mass = 1.00794

sp.add_line(my_label, field, wavelength, f_value, gamma, mass, label_threshold=1.e10)

In the the call to
add_line()
the field argument tells the spectrum generator which
field from the ray data to use to calculate the column density. The
label_threshold keyword tells the spectrum generator to add all lines
above a column density of 10 10 cm -2 to the
text line list output at the end. If None is provided, as is the default,
no lines of this type will be added to the text list.

Continuum features with optical depths that follow a power law can be added
with the
add_continuum()
function. Like adding lines, you must specify details like the wavelength
and the field in the dataset and LightRay that is tied to this feature.
The wavelength refers to the location at which the continuum begins to be
applied to the dataset, and as it moves to lower wavelength values, the
optical depth value decreases according to the defined power law. The
normalization value is the column density of the linked field which results
in an optical depth of 1 at the defined wavelength. Below, we add the hydrogen
Lyman continuum.

my_label = 'HI Lya'
field = 'H_p0_number_density'
wavelength = 912.323660 # Angstroms
normalization = 1.6e17
index = 3.0

sp.add_continuum(my_label, field, wavelength, normalization, index)

Making the Spectrum

Once all the lines and continuua are added, the spectrum is made with the
make_spectrum()
function.

wavelength, flux = sp.make_spectrum('lightray.h5',
 output_file='spectrum.fits',
 line_list_file='lines.txt')

A spectrum will be made using the specified ray data and the wavelength and
flux arrays will also be returned. If you set the optional
use_peculiar_velocity keyword to False, the lines will not incorporate
doppler redshifts to shift the deposition of the line features.

Three output file formats are supported for writing out the spectrum: fits,
hdf5, and ascii. The file format used is based on the extension provided
in the output_file keyword: .fits for a fits file,
.h5 for an hdf5 file, and anything else for an ascii file.

Note

To write out a fits file, you must install the astropy [http://www.astropy.org] python library in order to access the astropy.io.fits module. You can usually do this by simply running pip install astropy at the command line.

Generating Spectra in Parallel

Spectrum generation is parallelized using a multi-level
strategy where each absorption line is deposited by a different processor.
If the number of available processors is greater than the number of lines,
then the deposition of individual lines will be divided over multiple
processors.

Absorption spectrum creation can be run in parallel simply by adding the following
to the top of the script and running with mpirun.

import yt
yt.enable_parallelism()

For more information on parallelism in yt, see
Parallel Computation With yt [http://yt-project.org/docs/dev/analyzing/parallel_computation.html].

Fitting Absorption Spectra

This tool can be used to fit absorption spectra, particularly those
generated using Trident.
For more details on its uses and implementation please see (Egan et al. (2013) [http://arxiv.org/abs/1307.2244]). If you find this tool useful we
encourage you to cite accordingly.

Loading an Absorption Spectrum

To load an absorption spectrum created by
SpectrumGenerator,
specify the output file name. It is advisable to use either an .h5
or .fits file, rather than an ascii file to save the spectrum as rounding
errors produced in saving to a ascii file will negatively impact fit quality.

f = h5py.File('spectrum.h5')
wavelength = f["wavelength"][:]
flux = f['flux'][:]
f.close()

Specifying Species Properties

Before fitting a spectrum, you must specify the properties of all the
species included when generating the spectrum.

The physical properties needed for each species are the rest wavelength,
f-value, gamma value, and atomic mass. These will be the same values
as used to generate the initial absorption spectrum. These values are
given in list form as some species generate multiple lines (as in the
OVI doublet). The number of lines is also specified on its own.

To fine tune the fitting procedure and give results in a minimal
number of optimizing steps, we specify expected maximum and minimum
values for the column density, doppler parameter, and redshift. These
values can be well outside the range of expected values for a typical line
and are mostly to prevent the algorithm from fitting to negative values
or becoming numerically unstable.

Common initial guesses for doppler parameter and column density should also
be given. These values will not affect the specific values generated by
the fitting algorithm, provided they are in a reasonably appropriate range
(ie: within the range given by the max and min values for the parameter).

For a spectrum containing both the H Lyman-alpha line and the OVI doublet,
we set up a fit as shown below.

HI_parameters = {'name':'HI',
 'f': [.4164],
 'Gamma':[6.265E8],
 'wavelength':[1215.67],
 'numLines':1,
 'maxN': 1E22, 'minN':1E11,
 'maxb': 300, 'minb':1,
 'maxz': 6, 'minz':0,
 'init_b':30,
 'init_N':1E14}

OVI_parameters = {'name':'OVI',
 'f':[.1325,.06580],
 'Gamma':[4.148E8,4.076E8],
 'wavelength':[1031.9261,1037.6167],
 'numLines':2,
 'maxN':1E17,'minN':1E11,
 'maxb':300, 'minb':1,
 'maxz':6, 'minz':0,
 'init_b':20,
 'init_N':1E12}

speciesDicts = {'HI':HI_parameters,'OVI':OVI_parameters}

Generating Fit of Spectrum

After loading a spectrum and specifying the properties of the species
used to generate the spectrum, an appropriate fit can be generated.

from trident.absorption_spectrum.absorption_spectrum_fit import generate_total_fit

orderFits = ['OVI','HI']

fitted_lines, fitted_flux = generate_total_fit(wavelength,
 flux, orderFits, speciesDicts)

The orderFits variable is used to determine in what order the species
should be fitted. This may affect the results of the resulting fit,
as lines may be fit as an incorrect species. For best results, it is
recommended to fit species the generate multiple lines first, as a fit
will only be accepted if all of the lines are fit appropriately using
a single set of parameters. At the moment no cross correlation between
lines of different species is performed.

The parameters of the lines that are needed to fit the spectrum are contained
in the fitted_lines variable. Each species given in orderFits will
be a key in the fitted_lines dictionary. The entry for each species
key will be another dictionary containing entries for ‘N’,’b’,’z’, and
‘group#’ which are the column density, doppler parameter, redshift,
and associate line complex respectively. The i th line
of a given species is then given by the parameters N[i], b[i],
and z[i] and is part of the same complex (and was fitted at the same time)
as all lines with the same group number as group#[i].

The fitted_flux is an ndarray of the same size as flux and
wavelength that contains the cumulative absorption spectrum generated
by the lines contained in fitted_lines.

Saving a Spectrum Fit

Saving the results of a fitted spectrum for further analysis is
accomplished automatically using the h5 file format. A group
is made for each species that is fit, and each species group has
a group for the corresponding N, b, z, and group# values.

Procedure for Generating Fits

To generate a fit for a spectrum
generate_total_fit()
is called.
This function controls the identification of line complexes, the fit
of a series of absorption lines for each appropriate species, checks of
those fits, and returns the results of the fits.

Finding Line Complexes

Line complexes are found using the _find_complexes
function. The process by which line complexes are found involves walking
through the array of flux in order from minimum to maximum wavelength, and
finding series of spatially contiguous cells whose flux is less than some
limit. These regions are then checked in terms of an additional flux limit
and size. The bounds of all the passing regions are then listed and returned.
Those bounds that cover an exceptionally large region of wavelength space will
be broken up if a suitable cut point is found. This method is only appropriate
for noiseless spectra.

The optional parameter complexLim (default = 0.999), controls the limit
that triggers the identification of a spatially contiguous region of flux
that could be a line complex. This number should be very close to 1 but not
exactly equal. It should also be at least an order of magnitude closer to 1
than the later discussed fitLim parameter, because a line complex where
the flux of the trough is very close to the flux of the edge can be incredibly
unstable when optimizing.

The fitLim parameter controls what is the maximum flux that the trough
of the region can have and still be considered a line complex. This
effectively controls the sensitivity to very low column absorbers. Default
value is fitLim = 0.99. If a region is identified where the flux of the
trough is greater than this value, the region is simply ignored.

The minLength parameter controls the minimum number of array elements
that an identified region must have. This value must be greater than or
equal to 3 as there are a minimum of 3 free parameters that must be fit.
Default is minLength = 3.

The maxLength parameter controls the maximum number of array elements
that an identified region can have before it is split into separate regions.
Default is maxLength = 1000. This should be adjusted based on the
resolution of the spectrum to remain appropriate. The value correspond
to a wavelength of roughly 50 angstroms.

The splitLim parameter controls how exceptionally large regions are split.
When such a region is identified by having more array elements than
maxLength, the point of maximum flux (or minimum absorption) in the
middle two quartiles is identified. If that point has a flux greater than
or equal to splitLim, then two separate complexes are created: one from
the lower wavelength edge to the minimum absorption point and the other from
the minimum absorption point to the higher wavelength edge. The default
value is splitLim =.99, but it should not drastically affect results, so
long as the value is reasonably close to 1.

Fitting a Line Complex

After a complex is identified, it is fitted by iteratively adding and
optimizing a set of Voigt Profiles for a particular species until the
region is considered successfully fit. The optimizing is accomplished
using scipy’s least squares optimizer. This requires an initial estimate
of the parameters to be fit (column density, b-value, redshift) for each
line.

Each time a line is added, the guess of the parameters is based on
the difference between the line complex and the fit so far. For the first line
this just means the initial guess is based solely on the flux of the line
complex. The column density is given by the initial column density given
in the species parameters dictionary. If the line is saturated (some portion
of the flux with a value less than .1) than the larger initial column density
guess is chosen. If the flux is relatively high (all values >.9) than the
smaller initial guess is given. These values are chosen to make optimization
faster and more stable by being closer to the actual value, but the final
results of fitting should not depend on them as they merely provide a
starting point.

After the parameters for a line are optimized for the first time, the
optimized parameters are then used for the initial guess on subsequent
iterations with more lines.

The complex is considered successfully fit when the sum of the squares of
the difference between the flux generated from the fit and the desired flux
profile is less than errBound. errBound is related to the optional
parameter to
generate_total_fit()
maxAvgError by the number of array elements in the region such that
errBound = number of elements * maxAvgError.

There are several other conditions under which the cycle of adding and
optimizing lines will halt. If the error of the optimized fit from adding
a line is an order of magnitude worse than the error of the fit without
that line, then it is assumed that the fitting has become unstable and
the latest line is removed. Lines are also prevented from being added if
the total number of lines is greater than the number of elements in the flux
array being fit divided by 3. This is because there must not be more free
parameters in a fit than the number of points to constrain them.

Checking Fit Results

After an acceptable fit for a region is determined, there are several steps
the algorithm must go through to validate the fits.

First, the parameters must be in a reasonable range. This is a check to make
sure that the optimization did not become unstable and generate a fit that
diverges wildly outside the region where the fit was performed. This way, even
if particular complex cannot be fit, the rest of the spectrum fitting still
behaves as expected. The range of acceptability for each parameter is given
in the species parameter dictionary. These are merely broad limits that will
prevent numerical instability rather than physical limits.

In cases where a single species generates multiple lines (as in the OVI
doublet), the fits are then checked for higher wavelength lines. Originally
the fits are generated only considering the lowest wavelength fit to a region.
This is because we perform the fitting of complexes in order from the lowest
wavelength to the highest, so any contribution to a complex being fit must
come from the lower wavelength as the higher wavelength contributions would
already have been subtracted out after fitting the lower wavelength.

Saturated Lyman Alpha Fitting Tools

In cases where a large or saturated line (there exists a point in the complex
where the flux is less than .1) fails to be fit properly at first pass, a
more robust set of fitting tools is used to try and remedy the situation.
The basic approach is to simply try a much wider range of initial parameter
guesses in order to find the true optimization minimum, rather than getting
stuck in a local minimum. A set of hard coded initial parameter guesses
for Lyman alpha lines is given by the _get_test_lines function
Also included in these parameter guesses is an an initial guess of a high
column cool line overlapping a lower column warm line, indictive of a
broad Lyman alpha (BLA) absorber.

Testing

We maintain a series of tests in Trident to make sure the code gives consistent
results and to catch accidental breakages in our source code and dependencies.
These tests are run by Travis [https://travis-ci.org/] automatically and
regularly to assure consistency in functionality, but you can run them locally
too (see below). The tests consist of a mix of unit tests (tests to assure Trident
functions don’t actively fail) and answer tests (tests comparing newly
generated results against some old established results to assure consistency).

Running the Test Suite

Running the test suite requires a version of Trident installed from
source (see Step 2: Install Trident).

The tests are run using the pytest Python module. This can be
installed with conda or pip.

$ conda install pytest

The test suite requires a number of datasets for testing functionality.
Trident comes with a helper script that will download all the datasets and
untar them. Before running this, make sure you have the
answer_test_data_dir variable set in your config file (see Step 3: Get Ionization Table and Verify Installation).
This variable should point to a directory where these datasets will be stored.
The helper script is located in the tests directory of the Trident source.

$ cd tests
$ python download_test_data.py

If this is your first time running the tests, then you need to generate a
“gold standard” for the answer tests. Follow Generating Gold Standard Answer Test Results for Comparison
before continuing with running the tests, otherwise your answer tests will
fail.

Make sure you’re on the desired version of yt and trident that you want to
test and use (usually the tip of the development branch i.e., main).

$ export TRIDENT_GENERATE_TEST_RESULTS=0
$ cd /path/to/yt/
$ git checkout main
$ pip install -e .
$ cd /path/to/trident
$ git checkout main
$ pip install -e .

The test suite is run by calling py.test from within the tests
directory.

$ cd tests
$ py.test
============================= test session starts ==============================
platform darwin -- Python 3.6.0, pytest-3.0.7, py-1.4.32, pluggy-0.4.0
rootdir: /Users/britton/Documents/work/yt/extensions/trident/trident, inifile:
collected 52 items

test_absorption_spectrum.py
test_download.py .
test_generate.py .
test_instrument.py .
test_ion_balance.py
test_light_ray.py
test_line_database.py
test_lsf.py
test_pipelines.py ...
test_plotting.py .
test_ray_generator.py .
test_spectrum_generator.py

========================= 52 passed in 117.32 seconds ==========================

If a test fails for some reason, you will be given a detailed traceback and
reason for it failing. You can use this to identify what is wrong with your
source or perhaps a change in the code of your dependencies. The tests should
take around ten minutes to run.

Generating Gold Standard Answer Test Results for Comparison

In order to assure the Trident codebase gives consistent results over time,
we compare the outputs of tests of new versions of Trident against an older,
vetted version of the code we think gives accurate results. To create this
“gold standard” result from the older version of the code, you must roll back
the Trident and yt source back to the older “trusted” versions of the code.
You can find the tags for the most recent trusted versions of the code by
running gold_standard_versions.py and then rebuilding yt and Trident
with these versions of the code. Lastly, set the
TRIDENT_GENERATE_TEST_RESULTS environment variable to 1 and run the tests:

$ cd tests
$ python gold_standard_versions.py

Latest Gold Standard Commit Tags
yt = 953248239966
Trident = test-standard-v2

To update to them, `git checkout <tag>` in appropriate repository

$ cd /path/to/yt
$ git checkout 953248239966
$ pip install -e .
$ cd /path/to/trident
$ git checkout test-standard-v2
$ pip install -e .
$ export TRIDENT_GENERATE_TEST_RESULTS=1
$ cd tests
$ py.test

The test results should now be stored in the answer_test_data_dir that
you specified in your Trident configuration file. You may now run the actual
tests (see Running the Test Suite) with your current version of yt and
Trident comparing against these gold standard results.

The Tests Failed – What Do I Do?

If the tests have failed (either locally, or through the automatically generated
test from Travis), you want to figure out what caused the breakage. It was
either a change in trident or a change in one of Trident’s dependencies
(e.g., yt). So first examine the output from py.test to see if you can
deduce what went wrong.

Sometimes it isn’t obvious what caused the break,
in which case you may need to use git bisect to track down the change, either
in Trident or in yt. First, start with the tip of yt, and bisect the
changes in Trident since its gold standard version (see below). If that doesn’t
ID the bad changeset, then do the same with yt back to its gold standard
version. Once you have identified the specific commit that caused
the tests to break, you have to identify if it was a good or bad change.
If the unit tests failed and some functionality no longer works, then it was a
bad, and you’ll want to change the code that caused the break. On the other
hand, if the answer tests changed, and they did so because of an improvement to
the code, then you’ll simply want to go about Updating the Testing Gold Standard.

Updating the Testing Gold Standard

Periodically, the gold standard for our answer tests must be updated as bugs
are caught or new more accurate behavior is enabled that causes the answer
tests to fail. The first thing to do
is to identify the most accurate version of the code (e.g., changesets for
yt and trident that give the desired behavior). Tag the Trident changeset with
the next gold standard iteration. You can see the current iteration by looking
in the .travis.yml file at the TRIDENT_GOLD entry–increment this and
tag the changeset. Update the .travis.yml file so that the YT_GOLD and
TRIDENT_GOLD entries point to your desired changeset and tag. You have to
explicitly push the new tag (hereafter test-standard-v3) to your repository
(here: origin. Issue a pull request.

$ git tag test-standard-v3 <trident-changeset>
$... edit .travis.yml files to update YT_GOLD=<yt changeset>
$... and TRIDENT_GOLD=test-standard-v3
$ git add .travis.yml
$ git commit
$ git push origin test-standard-v3
$ <MAKE PULL REQUEST>

Once the pull request has been accepted, someone with admin access to the
main trident repository (here upstream) will have to push the gold standard
tag.

$ git push upstream test-standard-v3

Lastly, that person will have to also
clear Travis’ cache, so that it regenerates new answer test results. This can
be done manually here: https://travis-ci.org/trident-project/trident/caches .

Frequently Asked Questions

Why don’t I have any absorption features in my spectrum?

There are many reasons you might not have any absorption features in your
spectrum, but we’ll cover a few of the basic explanations here.

	Your absorbers are in a different part of the spectrum than you’re plotting.
Make sure you are plotting the wavelength range where you expect to see the
absorption by taking into account the wavelength of your absorption features
coupled with the redshift of your dataset: [image: \lambda_{obs} = (1 + z) \lambda_{rest}]
To see the wavelength of specific ionic transitions, see the line list in:
/trident/trident/data/line_lists/lines.txt.

	Your sightlines do not have sufficient column densities of the desired
ions to actually make an absorption feature. Look at the total column
density of your desired ions in your sightline by multiplying the
density times the path length and summing it all up. Here is an
example for showing the total O VI column density in a ray:

import trident
<generate/load your ray object>
trident.add_ion_fields(ray, ['O VI'])
ad = ray.all_data()
print((ad[('gas', 'O_p5_number_density')] * ad[('gas', 'dl')]).sum())

Depending on the ion, you usually need to see at least [image: 10^{12} cm^{-2}]
to have any appreciable absorption. Try sending a sightline through a
denser region in your simulation that might have more of that ion.

I don’t have a metallicity field in my dataset–What can I do?

In order to estimate the density of ions throughout your dataset, Trident
needs a metallicity field. But some datasets may not have one generated
by default. I highly recommend re-running the dataset with metals present,
as this will lead to the best estimate of ions from Trident, but if you just
want to create a “dummy” metallicity field, include the following code at the
top of your script to automatically add a uniform metallicity field to any
datasets loaded lacking one (in this case it’s 0.3 solar metallicity). For more
information on creating derived fields like this one, see the yt documentation
on derived fields [https://yt-project.org/docs/dev/developing/creating_derived_fields.html]

import yt
import numpy as np

def _metallicity(field, data):
 factor = 0.3 # 0.3 solar metallicity
 return (
 data.ds.arr(np.ones_like(data["gas", "density"]), 'Zsun') * factor
)

yt.add_field(
 ("gas", "metallicity"),
 function=_metallicity,
 sampling_type="local",
 units="Zsun",
)

What functions are available and what is their syntax?

Go see the full documentation for all of our available classes and functions in the
API Documentation.

What version of Trident am I running?

To learn what version of Trident you’re running, type:

$ python
>>> import trident
>>> print(trident.__version__)

If you have a version ending in dev, it means you’re on the development branch
and you should also figure out which particular changeset you’re running. You
can do this by:

$ cd <path/to/trident>
$ git log --pretty=format:'%h' -n 1

To figure out what version of yt you’re running, type:

$ yt version

If you’re writing to the mailing list with a problem, be sure to include all
of the above with your bug report or question.

Where is Trident installed? Where are its data files?

One can easily identify where Trident is installed:

$ python
>>> import trident
>>> print(trident.path)

The data files are located in that path with an appended /data.

How do I join the mailing list?

You can join our mailing list for announcements, bugs reports, and changes
at:

https://groups.google.com/forum/#!forum/trident-project-users

How do I learn more about the algorithms used in Trident?

We have a full description of all the methods used in Trident including
citations to previous related works in our Trident method paper [http://adsabs.harvard.edu/abs/2017ApJ...847...59H].

How do I cite Trident in my research?

Check out our citation page.

How do I get an invite to the Trident slack channel?

Click on this link [https://join.slack.com/t/trident-project/shared_invite/zt-42h0uuwy-fBggZbeymnq2cB9ivtWloA].

API Reference

Generating Rays

	make_simple_ray

	Create a yt LightRay object for a single dataset (eg CGM).

	make_compound_ray

	Create a yt LightRay object for multiple consecutive datasets (eg IGM).

	LightRay

	A 1D object representing the path of a light ray passing through a simulation.

Generating Spectra

	SpectrumGenerator

	Preferred class for generating, storing, and plotting absorption-line spectra.

	AbsorptionSpectrum

	Base class for generating absorption spectra.

	Instrument

	An instrument class for specifying a spectrograph/telescope pair

	LSF

	A class representing a spectrograph's line spread function.

	Line

	A class representing an individual atomic transition.

	LineDatabase

	Class for storing and selecting collections of spectral lines.

Plotting Spectra

	load_spectrum

	Load a previously saved spectrum from disk.

	plot_spectrum

	Plot a spectrum or a collection of spectra and save to disk.

Adding Ion Fields

	add_ion_fields

	Preferred method for adding ion fields to a yt dataset.

	add_ion_fraction_field

	Add ion fraction field to a yt dataset for the desired ion.

	add_ion_number_density_field

	Add ion number density field to a yt dataset for the desired ion.

	add_ion_density_field

	Add ion mass density field to a yt dataset for the desired ion.

	add_ion_mass_field

	Add ion mass field to a yt dataset for the desired ion.

Miscellaneous Utilities

	make_onezone_dataset

	Create a one-zone hydro dataset for use as test data.

	make_onezone_ray

	Create a one-zone ray object for use as test data.

	to_roman

	Convert an integer to a Roman numeral.

	from_roman

	Convert a Roman numeral to an integer.

	trident_path

	Return the path where the trident source is installed.

	trident

	Print a Trident ASCII logo to the screen.

	verify

	Verify that the bulk of Trident's functionality is working.

	generate_total_fit

	Fit an absorption-line spectrum into line profiles.

trident.ray_generator.make_simple_ray

	
trident.ray_generator.make_simple_ray(dataset_file, start_position, end_position, lines=None, ftype='gas', fields=None, solution_filename=None, data_filename=None, trajectory=None, redshift=None, field_parameters=None, setup_function=None, load_kwargs=None, line_database=None, ionization_table=None)

	Create a yt LightRay object for a single dataset (eg CGM). This is a
wrapper function around yt’s LightRay interface to reduce some of the
complexity there.

A simple ray is a straight line passing through a single dataset
where each gas cell intersected by the line is sampled for the desired
fields and stored. Several additional fields are created and stored
including dl to represent the path length in space
for each element in the ray, v_los to represent the line of
sight velocity along the ray, and redshift, redshift_dopp, and
redshift_eff to represent the cosmological redshift, doppler redshift
and effective redshift (combined doppler and cosmological) for each
element of the ray.

A simple ray is typically specified by its start and end positions in the
dataset volume. Because a simple ray only probes a single output, it
lacks foreground absorbers between the observer at z=0 and the redshift
of the dataset that one would naturally encounter. Thus it is usually
only appropriate for studying the circumgalactic medium rather than
the intergalactic medium.

This function can accept a yt dataset already loaded in memory,
or it can load a dataset if you pass it the dataset’s filename and
optionally any load_kwargs or setup_function necessary to load/process it
properly before generating the LightRay object.

The :lines: keyword can be set to automatically add all fields to the
resulting ray necessary for later use with the SpectrumGenerator class.
If the necessary fields do not exist for your line of choice, they will
be added to your dataset before adding them to the ray.

Parameters

	Dataset_file

	string or yt Dataset object

Either a yt dataset or the filename of a dataset on disk. If you are
passing it a filename, consider usage of the load_kwargs and
setup_function kwargs.

	Start_position, end_position

	list of floats or YTArray object

The coordinates of the starting and ending position of the desired
ray. If providing a raw list, coordinates are assumed to be in
code length units, but if providing a YTArray, any units can be
specified.

	Lines

	list of strings, optional

List of strings that determine which fields will be added to the ray
to support line deposition to an absorption line spectrum. List can
include things like “C”, “O VI”, or “Mg II ####”, where #### would be
the integer wavelength value of the desired line. If set to ‘all’,
includes all possible ions from H to Zn. :lines: can be used
in conjunction with :fields: as they will not override each other.
Default: None

	Ftype

	string, optional

This is now deprecated and unnecessary.
Default: “gas”

	Fields

	list of strings, optional

The list of which fields to store in the output LightRay.
See :lines: keyword for additional functionality that will add fields
necessary for creating absorption line spectra for certain line
features.
Default: None

	Solution_filename

	string, optional

Output filename of text file containing trajectory of LightRay
through the dataset.
Default: None

	Data_filename

	string, optional

Output filename for ray data stored as an HDF5 file. Note that
at present, you must save a ray to disk in order for it to be
returned by this function. If set to None, defaults to ‘ray.h5’.
Default: None

	Trajectory

	list of floats, optional

The (r, theta, phi) direction of the LightRay. Use either end_position
or trajectory, but not both.
Default: None

	Redshift

	float, optional

Sets the highest cosmological redshift of the ray. By default, it will
use the cosmological redshift of the dataset, if set, and if not set,
it will use a redshift of 0.
Default: None

	Field_parameters

	optional, dict
Used to set field parameters in light rays. For example,
if the ‘bulk_velocity’ field parameter is set, the relative
velocities used to calculate peculiar velocity will be adjusted
accordingly.
Default: None.

	Setup_function

	function, optional

A function that will be called on the dataset as it is loaded but
before the LightRay is generated. Very useful for adding derived
fields and other manipulations of the dataset prior to LightRay
creation.
Default: None

	Load_kwargs

	dict, optional

Dictionary of kwargs to be passed to the yt “load” function prior to
creating the LightRay. Very useful for many frontends like Gadget,
Tipsy, etc. for passing in “bounding_box”, “unit_base”, etc.
Default: None

	Line_database

	string, optional

For use with the :lines: keyword. If you want to limit the available
ion fields to be added to those available in a particular subset,
you can use a LineDatabase. This means when you
set :lines:=’all’, it will only use those ions present in the
corresponding LineDatabase. If :LineDatabase: is set to None,
and :lines:=’all’, it will add every ion of every element up to Zinc.
Default: None

	Ionization_table

	string, optional

For use with the :lines: keyword. Path to an appropriately formatted
HDF5 table that can be used to compute the ion fraction as a function
of density, temperature, metallicity, and redshift. When set to None,
it uses the table specified in ~/.trident/config
Default: None

Example

Generate a simple ray passing from the lower left corner to the upper
right corner through some Gizmo dataset:

>>> import trident
>>> import yt
>>> ds = yt.load('path/to/dataset')
>>> ray = trident.make_simple_ray(ds,
... start_position=ds.domain_left_edge, end_position=ds.domain_right_edge,
... lines=['H', 'O', 'Mg II'])

trident.ray_generator.make_compound_ray

	
trident.ray_generator.make_compound_ray(parameter_filename, simulation_type, near_redshift, far_redshift, lines=None, ftype='gas', fields=None, solution_filename=None, data_filename=None, use_minimum_datasets=True, max_box_fraction=1.0, deltaz_min=0.0, minimum_coherent_box_fraction=0.0, find_outputs=False, seed=None, setup_function=None, load_kwargs=None, line_database=None, ionization_table=None, field_parameters=None)

	Create a yt LightRay object for multiple consecutive datasets (eg IGM).
This is a wrapper function around yt’s LightRay interface to reduce some
of the complexity there.

Note

The compound ray functionality has only been implemented for the
Enzo and Gadget/Gizmo codes. If you would like to help us implement
this functionality for your simulation code, please contact us
about this on the mailing list.

A compound ray is a series of straight lines passing through multiple
consecutive outputs from a single cosmological simulation to approximate
a continuous line of sight to high redshift.

Because a single continuous ray traversing a simulated volume can only
cover a small range in redshift space (e.g. 100 Mpc only covers the
redshift range from z=0 to z=0.023), the compound ray passes rays through
multiple consecutive outputs from the same simulation to approximate the
path of a single line of sight to high redshift. By probing all of the
foreground material out to any given redshift, the compound ray is
appropriate for studies of the intergalactic medium and circumgalactic
medium.

By default, it selects a random starting location and trajectory in
each dataset it traverses, to assure that the same cosmological structures
are not being probed multiple times from the same direction. In doing
this, the ray becomes discontinuous across each dataset.

The compound ray requires the parameter_filename of the simulation run.
This is not the dataset filename from a single output, but the parameter
file that was used to run the simulation itself. It is in this parameter
file that the output frequency, simulation volume, and cosmological
parameters are described to assure full redshift coverage can be achieved
for a compound ray. It also requires the simulation_type of the simulation.

Unlike the simple ray, which is specified by its start and end positions
in the dataset volume, the compound ray requires the near_redshift and
far_redshift to determine which datasets to use to get full coverage
in redshift space as the ray propagates from near_redshift to far_redshift.

Like the simple ray produced by make_simple_ray,
each gas cell intersected by the LightRay is sampled for the desired
fields and stored. Several additional fields are created and stored
including dl to represent the path length in space
for each element in the ray, v_los to represent the line of
sight velocity along the ray, and redshift, redshift_dopp, and
redshift_eff to represent the cosmological redshift, doppler redshift
and effective redshift (combined doppler and cosmological) for each
element of the ray.

The :lines: keyword can be set to automatically add all fields to the
resulting ray necessary for later use with the SpectrumGenerator class.

Parameters

	Parameter_filename

	string

The simulation parameter file not the dataset filename

	Simulation_type

	string

The simulation type of the parameter file. At present, this
functionality only works with “Enzo” and “Gadget” yt frontends.

	Near_redshift, far_redshift

	floats

The near and far redshift bounds of the LightRay through the
simulation datasets.

	Lines

	list of strings, optional

List of strings that determine which fields will be added to the ray
to support line deposition to an absorption line spectrum. List can
include things like “C”, “O VI”, or “Mg II ####”, where #### would be
the integer wavelength value of the desired line. If set to ‘all’,
includes all possible ions from H to Zn. :lines: can be used
in conjunction with :fields: as they will not override each other.
Default: None

	Ftype

	string, optional

This is now deprecated and unnecessary.
Default: “gas”

	Fields

	list of strings, optional

The list of which fields to store in the output LightRay.
See :lines: keyword for additional functionality that will add fields
necessary for creating absorption line spectra for certain line
features.
Default: None

	Solution_filename

	string, optional

Output filename of text file containing trajectory of LightRay
through the dataset.
Default: None

	Data_filename

	string, optional

Output filename for ray data stored as an HDF5 file. Note that
at present, you must save a ray to disk in order for it to be
returned by this function. If set to None, defaults to ‘ray.h5’.
Default: None

	Use_minimum_datasets

	bool, optional

Use the minimum number of datasets to make the ray continuous
through the supplied datasets from the near_redshift to the
far_redshift. If false, the LightRay solution will contain as many
datasets as possible to enable the light ray to traverse the
desired redshift interval.
Default: True

	Max_box_fraction

	float, optional

The maximum length a light ray segment can be in order to span the
redshift interval from one dataset to another in units of the domain
size. Values larger than 1.0 will result in LightRays crossing the
domain of a given dataset more than once, which is generally undesired.
Zoom-in simulations can use a value equal to the length of the
high-resolution region so as to limit ray segments to that size. If
the high-resolution region is not cubical, the smallest size should b
used.
Default: 1.0 (the size of the box)

	Deltaz_min

	float, optional

The minimum delta-redshift value between consecutive datasets used
in the LightRay solution.
Default: 0.0

	Minimum_coherent_box_fraction

	float, optional

When use_minimum_datasets is set to False, this parameter specifies
the fraction of the total box width to be traversed before
rerandomizing the ray location and trajectory.
Default: 0.0

	Find_outputs

	optional, bool

Whether or not to search for datasets in the current
directory. This is useful if the number of existing datasets is
different than what would be predicted by the simulation parameter file.
Default: False.

	Seed

	int, optional

Sets the seed for the random number generator used to determine the
location and trajectory of the LightRay as it traverses the
simulation datasets. For consistent results between LightRays,
use the same seed value.
Default: None

	Setup_function

	function, optional

A function that will be called on the dataset as it is loaded but
before the LightRay is generated. Very useful for adding derived
fields and other manipulations of the dataset prior to LightRay
creation.
Default: None

	Load_kwargs

	dict, optional

Dictionary of kwargs to be passed to the yt “load” function prior to
creating the LightRay. Very useful for many frontends like Gadget,
Tipsy, etc. for passing in “bounding_box”, “unit_base”, etc.
Default: None

	Line_database

	string, optional

For use with the :lines: keyword. If you want to limit the available
ion fields to be added to those available in a particular subset,
you can use a LineDatabase. This means when you
set :lines:=’all’, it will only use those ions present in the
corresponding LineDatabase. If :LineDatabase: is set to None,
and :lines:=’all’, it will add every ion of every element up to Zinc.
Default: None

	Ionization_table

	string, optional

For use with the :lines: keyword. Path to an appropriately formatted
HDF5 table that can be used to compute the ion fraction as a function
of density, temperature, metallicity, and redshift. When set to None,
it uses the table specified in ~/.trident/config
Default: None

	Field_parameters

	optional, dict
Used to set field parameters in light rays. For example,
if the ‘bulk_velocity’ field parameter is set, the relative
velocities used to calculate peculiar velocity will be adjusted
accordingly.
Default: None.

Example

Generate a compound ray passing from the redshift 0 to redshift 0.05
through a multi-output enzo simulation.

>>> import trident
>>> fn = 'path/to/simulation/parameter/file'
>>> ray = trident.make_compound_ray(fn, simulation_type='Enzo',
... near_redshift=0.0, far_redshift=0.05, lines=['H', 'O', 'Mg II'])

Generate a compound ray passing from the redshift 0 to redshift 0.05
through a multi-output gadget simulation.

>>> import trident
>>> fn = 'path/to/simulation/parameter/file'
>>> ray = trident.make_compound_ray(fn, simulation_type='Gadget',
... near_redshift=0.0, far_redshift=0.05, lines=['H', 'O', 'Mg II'])

trident.light_ray.LightRay

	
class trident.light_ray.LightRay(parameter_filename, simulation_type=None, near_redshift=None, far_redshift=None, use_minimum_datasets=True, max_box_fraction=1.0, deltaz_min=0.0, minimum_coherent_box_fraction=0.0, time_data=True, redshift_data=True, find_outputs=False, load_kwargs=None)

	A 1D object representing the path of a light ray passing through a
simulation. LightRays can be either simple, where they pass through a
single dataset, or compound, where they pass through consecutive
datasets from the same cosmological simulation. One can sample any of
the fields intersected by the LightRay object as it passed through
the dataset(s).

For compound rays, the LightRay stacks together multiple datasets in a time
series in order to approximate a LightRay’s path through a volume
and redshift interval larger than a single simulation data output.
The outcome is something akin to a synthetic QSO line of sight.

Once the LightRay object is set up, use LightRay.make_light_ray to
begin making rays. Different randomizations can be created with a
single object by providing different random seeds to make_light_ray.

Parameters

	Parameter_filename

	string or Dataset [http://yt-project.org/docs/dev/reference/api/yt.data_objects.static_output.html#yt.data_objects.static_output.Dataset]

For simple rays, one may pass either a loaded dataset object or
the filename of a dataset.
For compound rays, one must pass the filename of the simulation
parameter file.

	Simulation_type

	optional, string

This refers to the simulation frontend type. Do not use for simple
rays.
Default: None

	Near_redshift

	optional, float

The near (lowest) redshift for a light ray containing multiple
datasets. Do not use for simple rays.
Default: None

	Far_redshift

	optional, float

The far (highest) redshift for a light ray containing multiple
datasets. Do not use for simple rays.
Default: None

	Use_minimum_datasets

	optional, bool

If True, the minimum number of datasets is used to connect the
initial and final redshift. If false, the light ray solution
will contain as many entries as possible within the redshift
interval. Do not use for simple rays.
Default: True.

	Max_box_fraction

	optional, float

In terms of the size of the domain, the maximum length a light
ray segment can be in order to span the redshift interval from
one dataset to another. If using a zoom-in simulation, this
parameter can be set to the length of the high resolution
region so as to limit ray segments to that size. If the
high resolution region is not cubical, the smallest side
should be used.
Default: 1.0 (the size of the box)

	Deltaz_min

	optional, float

Specifies the minimum [image: \Delta z] between consecutive
datasets in the returned list. Do not use for simple rays.
Default: 0.0.

	Minimum_coherent_box_fraction

	optional, float

Use to specify the minimum length of a ray, in terms of the
size of the domain, before the trajectory is re-randomized.
Set to 0 to have ray trajectory randomized for every dataset.
Set to np.inf (infinity) to use a single trajectory for the
entire ray.
Default: 0.

	Time_data

	optional, bool

Whether or not to include time outputs when gathering
datasets for time series. Do not use for simple rays.
Default: True.

	Redshift_data

	optional, bool

Whether or not to include redshift outputs when gathering
datasets for time series. Do not use for simple rays.
Default: True.

	Find_outputs

	optional, bool

Whether or not to search for datasets in the current
directory. Do not use for simple rays.
Default: False.

	Load_kwargs

	optional, dict

If you are passing a filename of a dataset to LightRay rather than an
already loaded dataset, then you can optionally provide this dictionary
as keywords when the dataset is loaded by yt with the “load” function.
Necessary for use with certain frontends. E.g.
Tipsy using “bounding_box”
Gadget using “unit_base”, etc.
Default : None

Methods

	__init__

	

	create_cosmology_splice

	Create list of datasets capable of spanning a redshift interval.

	make_light_ray

	Actually generate the LightRay by traversing the desired dataset.

	plan_cosmology_splice

	Create imaginary list of redshift outputs to maximally span a redshift interval.

trident.light_ray.LightRay.__init__

	
LightRay.__init__(parameter_filename, simulation_type=None, near_redshift=None, far_redshift=None, use_minimum_datasets=True, max_box_fraction=1.0, deltaz_min=0.0, minimum_coherent_box_fraction=0.0, time_data=True, redshift_data=True, find_outputs=False, load_kwargs=None)

	

trident.light_ray.LightRay.create_cosmology_splice

	
LightRay.create_cosmology_splice(near_redshift, far_redshift, minimal=True, max_box_fraction=1.0, deltaz_min=0.0, time_data=True, redshift_data=True)

	Create list of datasets capable of spanning a redshift
interval.

For cosmological simulations, the physical width of the simulation
box corresponds to some Delta z, which varies with redshift.
Using this logic, one can stitch together a series of datasets to
create a continuous volume or length element from one redshift to
another. This method will return such a list

	Parameters

	
	near_redshift (float) – The nearest (lowest) redshift in the cosmology splice list.

	far_redshift (float) – The furthest (highest) redshift in the cosmology splice list.

	minimal (bool) – If True, the minimum number of datasets is used to connect the
initial and final redshift. If false, the list will contain as
many entries as possible within the redshift
interval.
Default: True.

	max_box_fraction (float) – In terms of the size of the domain, the maximum length a light
ray segment can be in order to span the redshift interval from
one dataset to another. If using a zoom-in simulation, this
parameter can be set to the length of the high resolution
region so as to limit ray segments to that size. If the
high resolution region is not cubical, the smallest side
should be used.
Default: 1.0 (the size of the box)

	deltaz_min (float) – Specifies the minimum delta z between consecutive datasets
in the returned
list.
Default: 0.0.

	time_data (bool) – Whether or not to include time outputs when gathering
datasets for time series.
Default: True.

	redshift_data (bool) – Whether or not to include redshift outputs when gathering
datasets for time series.
Default: True.

Examples

>>> co = CosmologySplice("enzo_tiny_cosmology/32Mpc_32.enzo", "Enzo")
>>> cosmo = co.create_cosmology_splice(1.0, 0.0)

trident.light_ray.LightRay.make_light_ray

	
LightRay.make_light_ray(seed=None, periodic=True, left_edge=None, right_edge=None, min_level=None, start_position=None, end_position=None, trajectory=None, fields=None, setup_function=None, solution_filename=None, data_filename=None, get_los_velocity=None, use_peculiar_velocity=True, redshift=None, field_parameters=None, njobs=- 1)

	Actually generate the LightRay by traversing the desired dataset.

A light ray consists of a list of field values for cells
intersected by the ray and the path length of the ray through
those cells. Light ray data must be written out to an hdf5 file.

Parameters

	Seed

	optional, int

Seed for the random number generator.
Default: None.

	Periodic

	optional, bool

If True, ray trajectories will make use of periodic
boundaries. If False, ray trajectories will not be
periodic.
Default : True.

	Left_edge

	optional, iterable of floats or YTArray

The left corner of the region in which rays are to be
generated. If None, the left edge will be that of the
domain. If specified without units, it is assumed to
be in code units.
Default: None.

	Right_edge

	optional, iterable of floats or YTArray

The right corner of the region in which rays are to be
generated. If None, the right edge will be that of the
domain. If specified without units, it is assumed to
be in code units.
Default: None.

	Min_level

	optional, int

The minimum refinement level of the spatial region in which
the ray passes. This can be used with zoom-in simulations
where the high resolution region does not keep a constant
geometry.
Default: None.

	Start_position

	optional, iterable of floats or YTArray.

Used only if creating a light ray from a single dataset.
The coordinates of the starting position of the ray.
If specified without units, it is assumed to be in code units.
Default: None.

	End_position

	optional, iterable of floats or YTArray.

Used only if creating a light ray from a single dataset.
The coordinates of the ending position of the ray.
If specified without units, it is assumed to be in code units.
Default: None.

	Trajectory

	optional, list of floats

Used only if creating a light ray from a single dataset.
The (r, theta, phi) direction of the light ray. Use either
end_position or trajectory, not both.
Default: None.

	Fields

	optional, list

A list of fields for which to get data.
Default: None.

	Setup_function

	optional, callable, accepts a ds

This function will be called on each dataset that is loaded
to create the light ray. For, example, this can be used to
add new derived fields.
Default: None.

	Solution_filename

	optional, string

Path to a text file where the trajectories of each
subray is written out.
Default: None.

	Data_filename

	optional, string

Path to output file for ray data.
Default: None.

	Use_peculiar_velocity

	optional, bool

If True, the peculiar velocity along the ray will be sampled for
calculating the effective redshift combining the cosmological
redshift and the doppler redshift.
Default: True.

	Redshift

	optional, float

Used with light rays made from single datasets to specify a
starting redshift for the ray. If not used, the starting
redshift will be 0 for a non-cosmological dataset and
the dataset redshift for a cosmological dataset.
Default: None.

	Field_parameters

	optional, dict
Used to set field parameters in light rays. For example,
if the ‘bulk_velocity’ field parameter is set, the relative
velocities used to calculate peculiar velocity will be adjusted
accordingly.
Default: None.

	Njobs

	optional, int

The number of parallel jobs over which the segments will
be split. Choose -1 for one processor per segment.
Default: -1.

Examples

Make a light ray from multiple datasets:

>>> import yt
>>> from trident import LightRay
>>> my_ray = LightRay("enzo_tiny_cosmology/32Mpc_32.enzo", "Enzo",
... 0., 0.1, time_data=False)
...
>>> my_ray.make_light_ray(seed=12345,
... solution_filename="solution.txt",
... data_filename="my_ray.h5",
... fields=["temperature", "density"],
... use_peculiar_velocity=True)

Make a light ray from a single dataset:

>>> import yt
>>> from trident import LightRay
>>> my_ray = LightRay("IsolatedGalaxy/galaxy0030/galaxy0030")
...
>>> my_ray.make_light_ray(start_position=[0., 0., 0.],
... end_position=[1., 1., 1.],
... solution_filename="solution.txt",
... data_filename="my_ray.h5",
... fields=["temperature", "density"],
... use_peculiar_velocity=True)

trident.light_ray.LightRay.plan_cosmology_splice

	
LightRay.plan_cosmology_splice(near_redshift, far_redshift, max_box_fraction=1.0, decimals=3, filename=None, start_index=0)

	Create imaginary list of redshift outputs to maximally
span a redshift interval.

If you want to run a cosmological simulation that will have just
enough data outputs to create a cosmology splice,
this method will calculate a list of redshifts outputs that will
minimally connect a redshift interval.

	Parameters

	
	near_redshift (float) – The nearest (lowest) redshift in the cosmology splice list.

	far_redshift (float) – The furthest (highest) redshift in the cosmology splice list.

	max_box_fraction (float) – In terms of the size of the domain, the maximum length a light
ray segment can be in order to span the redshift interval from
one dataset to another. If using a zoom-in simulation, this
parameter can be set to the length of the high resolution
region so as to limit ray segments to that size. If the
high resolution region is not cubical, the smallest side
should be used.
Default: 1.0 (the size of the box)

	decimals (int) – The decimal place to which the output redshift will be rounded.
If the decimal place in question is nonzero, the redshift will
be rounded up to
ensure continuity of the splice. Default: 3.

	filename (string) – If provided, a file will be written with the redshift outputs in
the form in which they should be given in the enzo dataset.
Default: None.

	start_index (int) – The index of the first redshift output. Default: 0.

Examples

>>> from yt.extensions.astro_analysis.cosmological_observation.api import CosmologySplice
>>> my_splice = CosmologySplice('enzo_tiny_cosmology/32Mpc_32.enzo', 'Enzo')
>>> my_splice.plan_cosmology_splice(0.0, 0.1, filename='redshifts.out')

trident.spectrum_generator.SpectrumGenerator

	
class trident.spectrum_generator.SpectrumGenerator(instrument=None, lambda_min=None, lambda_max=None, n_lambda=None, dlambda=None, lsf_kernel=None, line_database='lines.txt', ionization_table=None, bin_space='wavelength')

	Preferred class for generating, storing, and plotting absorption-line spectra.
SpectrumGenerator is a subclass of yt’s AbsorptionSpectrum class
with additional functionality like line lists, post-processing to
include Milky Way foreground, quasar backgrounds, applying line-spread
functions, and plotting.

User first specifies the telescope/instrument used for generating spectra
(e.g. ‘COS’ for the Cosmic Origins Spectrograph aboard the
Hubble Space Telescope). This can be done by naming the
Instrument, or manually setting all of the spectral
characteristics including lambda_min, lambda_max, lsf_kernel,
and n_lambda or dlambda. If none of these arguments are set,
defaults to ‘COS’ as the default instrument covering 1150-1450 Angstroms
with a binsize (dlambda) of 0.1 Angstroms.

Once a SpectrumGenerator has been initialized, pass it
LightRay objects using make_spectrum
to actually generate the spectra themselves. Then one can post-process,
plot, or save them using
add_milky_way_foreground,
add_qso_spectrum,
apply_lsf,
save_spectrum, and
plot_spectrum.

Parameters

	Instrument

	string, optional

The spectrograph to use. Currently, the only named options are
different observing modes of the Cosmic Origins Spectrograph ‘COS’:
‘COS-G130M’, ‘COS-G160M’, and ‘COS-G140L’ as well as ‘COS’ which
aliases to ‘COS-G130M’. These automatically set the lambda_min,
lambda_max, dlambda and lsf_kernel``s appropriately.
If you're going to set ``lambda_min, lambda_max, et al manually,
leave this set to None.
Default: None

	Lambda_min

	float, YTQuantity, or ‘auto’

lower wavelength bound in angstroms or velocity bound in km/s
(if bin_space set to ‘velocity’). If set to ‘auto’, the lower
bound will be automatically adjusted to encompass all absorption
lines. The window will not be expanded for continuum features,
only absorption lines.

	Lambda_max

	float, YTQuantity, or ‘auto’

upper wavelength bound in angstroms or velocity bound in km/s
(if bin_space set to ‘velocity’). If set to ‘auto’, the upper
bound will be automatically adjusted to encompass all absorption
lines. The window will not be expanded for continuum features,
only absorption lines.

	N_lambda

	int

The number of bins in the spectrum (inclusive), so if
extrema = 10 and 20, and dlambda (binsize) = 1, then n_lambda = 11.
Default: None

	Dlambda

	float

size of the wavelength bins in angstroms or velocity bins in km/s.
Default: None

	Bin_space

	‘wavelength’ or ‘velocity’

Sets the dimension in which spectra are created. If set to
wavelength, the resulting spectra are flux (or tau) vs. observed
wavelength. If set to velocity, the spectra are flux vs.
velocity offset from the rest wavelength of the absorption line.
Default: wavelength

	Lsf_kernel

	string, optional

The filename for the LSF kernel. Files are found in
trident.__path__/data/lsf_kernels or current working directory.
Only necessary if you are applying an LSF to the spectrum in
postprocessing.
Default: None

	Line_database

	string or LineDatabase, optional

A text file listing the various lines to insert into the line database,
or a LineDatabase object in memory. The line database
provides a list of all possible lines that could be added to the
spectrum. For a text file, it should have 4 tab-delimited columns of
name (e.g. MgII), wavelength in angstroms, gamma of transition, and
f-value of transition. See example datasets in
trident.path/data/line_lists for examples.
Default: lines.txt

	Ionization_table

	hdf5 file, optional

An HDF5 file used for computing the ionization fraction of the gas
based on its density, temperature, metallicity, and redshift. If
set to None, will use the ion table defined in your Trident config
file.
Default: None

Example

Create a one-zone ray, and generate a COS spectrum from that ray.

>>> import trident
>>> ray = trident.make_onezone_ray()
>>> sg = trident.SpectrumGenerator('COS')
>>> sg.make_spectrum(ray)
>>> sg.plot_spectrum('spec_raw.png')

Create a one-zone ray at redshift 0.5, and generate a spectrum with 1
angstrom spectral bins from 2000-4000 angstroms, then post-process by
adding a MW foreground a QSO background at z=0.5 and add a boxcar line
spread function of 100 angstroms width. Plot it and save the figure to
‘spec_final.png’.

>>> import trident
>>> ray = trident.make_onezone_ray(redshift=0.5)
>>> sg = trident.SpectrumGenerator(lambda_min=2000, lambda_max=4000,
... dlambda=1)
>>> sg.make_spectrum(ray)
>>> sg.add_qso_spectrum(emitting_redshift=.5)
>>> sg.add_milky_way_foreground()
>>> sg.apply_lsf(function='boxcar', width=100)
>>> sg.plot_spectrum('spec_final.png')

Methods

	__init__

	

	add_continuum

	Add a continuum feature that follows a power-law.

	add_gaussian_noise

	Postprocess a spectrum to add gaussian random noise of a given SNR.

	add_line

	Add an absorption line to the list of lines included in the spectrum.

	add_line_to_database

	Adds desired line to the current LineDatabase object.

	add_milky_way_foreground

	Postprocess a spectrum to add a Milky Way foreground.

	add_noise_vector

	Add an array of noise to the spectrum.

	add_qso_spectrum

	Postprocess a spectrum to add a QSO spectrum background.

	apply_lsf

	Postprocess a spectrum to apply a line spread function.

	clear_spectrum

	Clear the current spectrum in the SpectrumGenerator.

	error_func

	Approximate the flux error for a spectrum.

	load_spectrum

	Load data arrays into an existing spectrum object.

	make_spectrum

	Make a spectrum from ray data depositing the desired lines.

	plot_spectrum

	Plot the current spectrum and save to disk.

	save_spectrum

	Save the current spectrum data to an output file.

Attributes

	current_tau_field

	This is the optical depth array for the current absorption line being deposited.

	lambda_field

	The lambda field.

	tau_field

	This is the total optical depth of all lines and continua.

trident.spectrum_generator.SpectrumGenerator.__init__

	
SpectrumGenerator.__init__(instrument=None, lambda_min=None, lambda_max=None, n_lambda=None, dlambda=None, lsf_kernel=None, line_database='lines.txt', ionization_table=None, bin_space='wavelength')

	

trident.spectrum_generator.SpectrumGenerator.add_continuum

	
SpectrumGenerator.add_continuum(label, field_name, wavelength, normalization, index)

	Add a continuum feature that follows a power-law.

Parameters

	Label

	string

label for the feature.

	Field_name

	string

field name from ray data for column densities.

	Wavelength

	float

line rest wavelength in angstroms.

	Normalization

	float

the column density normalization.

	Index

	float

the power-law index for the wavelength dependence.

trident.spectrum_generator.SpectrumGenerator.add_gaussian_noise

	
SpectrumGenerator.add_gaussian_noise(snr, seed=None)

	Postprocess a spectrum to add gaussian random noise of a given SNR.

Parameters

	Snr

	float

The desired signal-to-noise ratio for determining the amount of
gaussian noise

	Seed

	optional, int

Seed for the random number generator. This should be used to
ensure than the same noise is added each time the spectrum is
regenerated, if desired.
Default: None

Example

Make a one zone ray and generate a COS spectrum for it. Add noise
to the spectrum as though it were observed with a signal to noise
ratio of 30.

>>> import trident
>>> ray = trident.make_onezone_ray(redshift=0.5)
>>> sg = trident.SpectrumGenerator('COS')
>>> sg.make_spectrum(ray)
>>> sg.add_gaussian_noise(30)
>>> sg.plot_spectrum('spec_noise_corrected.png')

Plot a DLA with SNR of 10.

>>> import trident
>>> ray = trident.make_onezone_ray(column_densities={'H_p0_number_density':1e21})
>>> sg = trident.SpectrumGenerator(lambda_min=1200, lambda_max=1300, dlambda=0.1)
>>> sg.make_spectrum(ray, lines=['Ly a'])
>>> sg.add_gaussian_noise(10)
>>> sg.plot_spectrum('spec_noise.png')

trident.spectrum_generator.SpectrumGenerator.add_line

	
SpectrumGenerator.add_line(label, field_name, wavelength, f_value, gamma, atomic_mass, label_threshold=None)

	Add an absorption line to the list of lines included in the spectrum.

Parameters

	Label

	string

label for the line.

	Field_name

	string

field name from ray data for column densities.

	Wavelength

	float

line rest wavelength in angstroms.

	F_value

	float

line f-value.

	Gamma

	float

line gamme value.

	Atomic_mass

	float

mass of atom in amu.

trident.spectrum_generator.SpectrumGenerator.add_line_to_database

	
SpectrumGenerator.add_line_to_database(element, ion_state, wavelength, gamma, f_value, field=None, identifier=None)

	Adds desired line to the current LineDatabase object.

Parameters

	Element

	string

The element of the transition using element’s symbol on periodic table

	Ion_state

	string

The roman numeral representing the ionic state of the transition

	Wavelength

	float

The wavelength of the transition in angstroms

	Gamma

	float

The gamma of the transition in Hertz

	F_value

	float

The oscillator strength of the transition

	Field

	string, optional

The default yt field name associated with the ion responsible for
this line
Default: None

	Identifier

	string, optional

An optional identifier for the transition
Default: None

trident.spectrum_generator.SpectrumGenerator.add_milky_way_foreground

	
SpectrumGenerator.add_milky_way_foreground(flux_field=None, filename=None)

	Postprocess a spectrum to add a Milky Way foreground. Data
from Charles Danforth. Median-filter of 92 normalized
COS/G130M+G160M AGN spectra spanning the wavelength range of
1130 to 1800 Angstroms in 0.07 Angstrom bin size.

Parameters

	Flux_field

	optional, array

Array of flux values to which the Milky Way foreground is applied.
Default: None

	Filename

	string

Filename where the Milky Way foreground values used to modify
the flux are stored.
Default: None

Example

Make a one zone ray and generate a COS spectrum for it. Add
MW foreground to it, and save it.

>>> import trident
>>> ray = trident.make_onezone_ray()
>>> sg = trident.SpectrumGenerator('COS')
>>> sg.make_spectrum(ray)
>>> sg.add_milky_way_foreground()
>>> sg.plot_spectrum('spec_mw_corrected.png')

Plot a naked MW spectrum.

>>> import trident
>>> sg = trident.SpectrumGenerator('COS')
>>> sg.add_milky_way_foreground()
>>> sg.plot_spectrum('spec_mw.png')

trident.spectrum_generator.SpectrumGenerator.add_noise_vector

	
SpectrumGenerator.add_noise_vector(noise)

	Add an array of noise to the spectrum.

Parameters

	Noise

	array of floats

The array of noise values to be added to the spectrum. This
array must be of the same size as the flux array.

Example

>>> import numpy as np
>>> import trident
>>> ray = trident.make_onezone_ray(column_densities={'H_p0_number_density':1e21})
>>> sg = trident.SpectrumGenerator(lambda_min=1200, lambda_max=1300, dlambda=0.1)
>>> sg.make_spectrum(ray, lines=['Ly a'])
>>> my_noise = np.random.normal(loc=0.0, scale=0.1, size=sg.flux_field.size)
>>> sg.add_noise_vector(my_noise)
>>> sg.plot_spectrum('spec_noise.png')

trident.spectrum_generator.SpectrumGenerator.add_qso_spectrum

	
SpectrumGenerator.add_qso_spectrum(flux_field=None, emitting_redshift=None, observing_redshift=None, filename=None)

	Postprocess a spectrum to add a QSO spectrum background. Uses data from
Telfer et al., ApJ, 565, 773 “The Rest-Frame Extreme Ultraviolet
Spectral Properties of QSO”. HST Radio Quiet composite for < 1275 Ang,
SDSS composite > 2000 Ang, mean in between 8251 0

Parameters

	Flux_field

	array, optional

Array of flux values to which the quasar background is applied.
Default: None

	Emitting_redshift

	float, optional

Redshift value at which the QSO emitted its light. If specified
as None, use 0.
Default: None

	Observing_redshift

	float, optional

Redshift value at which the quasar is observed. If specified as
None, use the observing_redshift value specified in make_spectrum()
which defaults to 0.
Default: None

	Filename

	string

Filename where the Milky Way foreground values used to modify
the flux are stored.
Default: None

Example

Make a one zone ray at redshift of .5 and generate a COS spectrum for
it. Add z=0.5 quasar background to it, and save it.

>>> import trident
>>> ray = trident.make_onezone_ray(redshift=0.5)
>>> sg = trident.SpectrumGenerator('COS')
>>> sg.make_spectrum(ray)
>>> sg.add_qso_spectrum(emitting_redshift=0.5)
>>> sg.plot_spectrum('spec_qso_corrected.png')

Plot a naked QSO spectrum at z=.1

>>> import trident
>>> sg = trident.SpectrumGenerator('COS')
>>> sg.add_qso_spectrum(emitting_redshift=.1)
>>> sg.plot_spectrum('spec_qso.png')

trident.spectrum_generator.SpectrumGenerator.apply_lsf

	
SpectrumGenerator.apply_lsf(function=None, width=None, filename=None)

	Postprocess a spectrum to apply a line spread function.
If the SpectrumGenerator already has an LSF_kernel set, it will
be used when no keywords are supplied. Otherwise, the user can
specify a filename of a user-defined kernel or a function+width
for a kernel. Valid functions are: “boxcar” and “gaussian”.

For more information, see LSF and
Instrument.

Parameters

	Function

	string, optional

Desired functional form for the applied LSF kernel.
Valid options are currently “boxcar” or “gaussian”
Default: None

	Width

	int, optional

Width of the desired LSF kernel in bin elements
Default: None

	Filename

	string, optional

The filename of the user-supplied kernel for applying the LSF
Default: None

Example

Make a one zone ray and generate a COS spectrum for it. Apply the
COS line spread function to it.

>>> import trident
>>> ray = trident.make_onezone_ray()
>>> sg = trident.SpectrumGenerator('COS')
>>> sg.make_spectrum(ray)
>>> sg.apply_lsf()
>>> sg.plot_spectrum('spec_lsf_corrected.png')

Make a one zone ray and generate a spectrum with bin width = 1 angstrom.
Apply a boxcar LSF to it with width 50 angstroms.

>>> import trident
>>> ray = trident.make_onezone_ray()
>>> sg = trident.SpectrumGenerator(lambda_min=1100, lambda_max=1200, dlambda=1)
>>> sg.make_spectrum(ray)
>>> sg.apply_lsf(function='boxcar', width=50)
>>> sg.plot_spectrum('spec_lsf_corrected.png')

trident.spectrum_generator.SpectrumGenerator.clear_spectrum

	
SpectrumGenerator.clear_spectrum()

	Clear the current spectrum in the SpectrumGenerator.
Clears the existing spectrum’s flux and tau fields and replaces them
with ones and zeros respectively. Clear the line list kept in
the AbsorptionSpectrum object as well. Also clear the line_subset
stored by the LineDatabase.

trident.spectrum_generator.SpectrumGenerator.error_func

	
SpectrumGenerator.error_func(flux)

	Approximate the flux error for a spectrum.
Many observational analysis programs require a flux error channel
in addition to a flux channel. So we create a zeroth order
approximation of the flux error, simply by taking the square root
of the flux. Unfortunately, with flux normalized to be < 1, this
would result in errors larger than the flux values themselves,
so we normalize by an arbitrary signal-to-noise ratio, which by default
is set to 100. This yields a typical error for a normalized spectrum of
sqrt(1.0*100)/100 = 0.1. This assures our flux errors are smaller
than our fluxes for most flux reasonable flux values. Note that
when a signal to noise ratio is specified for adding gaussian noise,
it uses this updated value for estimating the errors. SNR is set
as an attribute of AbsorptionSpectrum directly (e.g., as.snr = N).

Parameters

	Flux

	array of floats

The array of flux values

trident.spectrum_generator.SpectrumGenerator.load_spectrum

	
SpectrumGenerator.load_spectrum(lambda_field=None, tau_field=None, flux_field=None)

	Load data arrays into an existing spectrum object.

Parameters

	Lambda_field

	array

The array of valid wavelengths
Default: None

	Tau_field

	array

The array of optical depths for the corresponding wavelengths
Default: None

	Flux_field

	array

The array of flux values for the corresponding wavelengths
Default: None

Example

Loading a custom set of data into an existing SpectrumGenerator object:

>>> import trident
>>> import numpy as np
>>> lambda_field = np.arange(1200,1400)
>>> flux_field = np.ones(len(lambda_field))
>>> sg = trident.SpectrumGenerator('COS')
>>> sg.load_spectrum(lambda_field=lambda_field, flux_field=flux_field)
>>> sg.plot_spectrum('temp.png')

trident.spectrum_generator.SpectrumGenerator.make_spectrum

	
SpectrumGenerator.make_spectrum(ray, lines='all', output_file=None, output_absorbers_file=None, use_peculiar_velocity=True, observing_redshift=0.0, ly_continuum=True, store_observables=False, min_tau=0.001, njobs='auto')

	Make a spectrum from ray data depositing the desired lines. Make sure
to pass this function a LightRay object and potentially also a list of
strings representing what lines you’d like to actually have be
deposited in your final spectrum.

Parameters

	Ray

	string, dataset, or data container

If a string, the path to the ray dataset. As a dataset,
this is the ray dataset loaded by yt. As a data container,
this is a data object created from a ray dataset, such as
a cut region.

	Lines

	list of strings

List of strings that determine which lines will be added
to the spectrum. List can include things like “C”, “O VI”,
or “Mg II ####”, where #### would be the integer wavelength
value of the desired line. If set to ‘all’, includes all lines
in LineDatabase set in SpectrumGenerator.
Default: ‘all’

	Output_file

	optional, string

Filename of output if you wish to save the spectrum immediately
without any further processing. File formats are chosen based on the
filename extension. “.h5” for HDF5, “.fits” for FITS,
and everything else is ASCII. Equivalent of calling
save_spectrum.
Default: None

	Output_absorbers_file

	optional, string

Option to save a text file containing all of the absorbers and
corresponding wavelength and redshift information.
For parallel jobs, combining the lines lists can be slow so it
is recommended to set to None in such circumstances.
Default: None

	Use_peculiar_velocity

	optional, bool

If True, include the effects of doppler redshift of the gas
in shifting lines in the final spectrum.
Default: True

	Observing_redshift

	optional, float

This is the value of the redshift at which the observer of this
spectrum exists. In most cases, this will be a redshift of 0.
Default: 0.

	Ly_continuum

	optional, boolean

If any H I lines are used in the line list, this assures a
Lyman continuum will be included in the spectral generation.
Lyman continuum begins at final Lyman line deposited (Ly 39 =
912.32 A) not at formal Lyman Limit (911.76 A) so as to not have
a gap between final Lyman lines and continuum. Uses power law
of index 3 and normalization to match opacity of final Lyman lines.
Default: True

	Store_observables

	optional, boolean

If set to true, observable properties for each cell in the light
ray will be saved for each line in the line list. Properties
include the column density, tau, thermal b, and the wavelength
where tau was deposited. Best applied for a reasonable number
of lines. These quantities will be saved to the SpectrumGenerator
attribute: ‘line_observables_dict’.
Default: False

	Min_tau

	optional, float
This value determines size of the wavelength window used to
deposit lines or continua. The wavelength window is expanded
until the optical depth at the edge is below this value. If too
high, this will result in features appearing cut off at the edges.
Decreasing this will make features smoother but will also increase
run time. An increase by a factor of ten will result in roughly a
2x slow down.
Default: 1e-3.

	Njobs

	optional, int or “auto”

The number of process groups into which the loop over
absorption lines will be divided. If set to -1, each
absorption line will be deposited by exactly one processor.
If njobs is set to a value less than the total number of
available processors (N), then the deposition of an
individual line will be parallelized over (N / njobs)
processors. If set to “auto”, it will first try to
parallelize over the list of lines and only parallelize
the line deposition if there are more processors than
lines. This is the optimal strategy for parallelizing
spectrum generation.
Default: “auto”

Example

Make a one zone ray and generate a COS spectrum for it including
only Oxygen VI, Mg II, and all Carbon lines, and plot to disk.

>>> import trident
>>> ray = trident.make_onezone_ray()
>>> sg = trident.SpectrumGenerator('COS')
>>> sg.make_spectrum(ray, lines=['O VI', 'Mg II', 'C'])
>>> sg.plot_spectrum('spec_raw.png')

trident.spectrum_generator.SpectrumGenerator.plot_spectrum

	
SpectrumGenerator.plot_spectrum(filename='spectrum.png', lambda_limits=None, flux_limits=None, step=False, title=None, label=None, figsize=None, features=None, axis_labels=None)

	Plot the current spectrum and save to disk.

This is a convenience method that wraps the
plot_spectrum standalone function for use with the
data from the SpectrumGenerator itself.

Parameters

	Filename

	string, optional

Output filename of the plotted spectrum. Will be a png file.
Default: ‘spectrum.png’

	Lambda_limits

	tuple or list of floats, optional

The minimum and maximum of the lambda range (x-axis) for the plot
in angstroms. If specified as None, will use whole lambda range
of spectrum. Example: (1200, 1400) for 1200-1400 Angstroms.
Default: None

	Flux_limits

	tuple or list of floats, optional

The minimum and maximum of the flux range (y-axis) for the plot.
If specified as None, limits are automatically from
[0, 1.1*max(flux)]. Example: (0, 1) for normal flux range before
postprocessing.
Default: None

	Step

	boolean, optional

Plot the spectrum as a series of step functions. Appropriate for
plotting processed and noisy data.

	Title

	string, optional

Optional title for plot
Default: None

	Label

	string, optional

Label for spectrum to be plotted. Will automatically trigger a
legend to be generated.
Default: None

	Features

	dict, optional

Include vertical lines with labels to represent certain spectral
features. Each entry in the dictionary consists of a key string to
be overplot and the value float as to where in wavelength space it
will be plot as a vertical line with the corresponding label.

Example: features={‘Ly a’ : 1216, ‘Ly b’ : 1026}

Default: None

	Axis_labels

	tuple of strings, optional

Optionally set the axis labels directly. If set to None, defaults to
(‘Wavelength [$rmAA$]’, ‘Relative Flux’).
Default: None

Example

Create a one-zone ray, and generate a COS spectrum from that ray. Plot
the resulting spectrum highlighting the Lyman alpha feature.

>>> import trident
>>> ray = trident.make_onezone_ray()
>>> sg = trident.SpectrumGenerator('COS')
>>> sg.make_spectrum(ray)
>>> sg.plot_spectrum('spec_raw.png', features={'Ly a' : 1216})

trident.spectrum_generator.SpectrumGenerator.save_spectrum

	
SpectrumGenerator.save_spectrum(filename='spectrum.h5', format=None)

	Save the current spectrum data to an output file. Unless specified,
the output data format will be determined by the suffix of the filename
provided (“h5”:HDF5, “fits”:FITS, all other:ASCII).

ASCII data is stored as a tab-delimited text file.

Parameters

	Filename

	string, optional

Output filename for storing the data.
Default: ‘spectrum.h5’

	Format

	string, optional

Data format of the output file. Valid examples are “HDF5”,
“FITS”, and “ASCII”. If None is set, selects based on suffix
of filename.
Default: None

Example

Save a spectrum to disk, load it from disk, and plot it.

>>> import trident
>>> ray = trident.make_onezone_ray()
>>> sg = trident.SpectrumGenerator('COS')
>>> sg.make_spectrum(ray)
>>> sg.save_spectrum('temp.h5')
>>> sg.clear_spectrum()
>>> sg.load_spectrum('temp.h5')
>>> sg.plot_spectrum('temp.png')

trident.spectrum_generator.SpectrumGenerator.current_tau_field

	
property SpectrumGenerator.current_tau_field

	This is the optical depth array for the current absorption line
being deposited. We will do the deposition of lines into this
array, and then add it to self.tau_field at the end.

trident.spectrum_generator.SpectrumGenerator.lambda_field

	
property SpectrumGenerator.lambda_field

	The lambda field.

trident.spectrum_generator.SpectrumGenerator.tau_field

	
property SpectrumGenerator.tau_field

	This is the total optical depth of all lines and continua.

trident.absorption_spectrum.absorption_spectrum.AbsorptionSpectrum

	
class trident.absorption_spectrum.absorption_spectrum.AbsorptionSpectrum(lambda_min, lambda_max, n_lambda=None, dlambda=None, bin_space='wavelength')

	Base class for generating absorption spectra. This code was originally
based in yt and more restrictive in terms of what development was allowed,
so the SpectrumGenerator subclass has more advanced
functionality built on top of this. The base algorithm and functionality
for spectral generation occurs here though.

Note

The preferred method for generating spectra is using
SpectrumGenerator.

Parameters

	Lambda_min

	float, YTQuantity, or ‘auto’

lower wavelength bound in angstroms or velocity bound in km/s
(if bin_space set to ‘velocity’). If set to ‘auto’, the lower
bound will be automatically adjusted to encompass all absorption
lines. The window will not be expanded for continuum features,
only absorption lines.

	Lambda_max

	float, YTQuantity, or ‘auto’

upper wavelength bound in angstroms or velocity bound in km/s
(if bin_space set to ‘velocity’). If set to ‘auto’, the upper
bound will be automatically adjusted to encompass all absorption
lines. The window will not be expanded for continuum features,
only absorption lines.

	N_lambda

	optional, int

number of bins. This cannot be set when setting either lambda_min
or lambda_max to auto.

	Dlambda

	optional, float or YTQuantity

size of the wavelength bins in angstroms or velocity bins in km/s.

	Bin_space

	‘wavelength’ or ‘velocity’

Sets the dimension in which spectra are created. If set to
wavelength, the resulting spectra are flux (or tau) vs. observed
wavelength. If set to velocity, the spectra are flux vs.
velocity offset from the rest wavelength of the absorption line.
Default: wavelength

Methods

	__init__

	

	add_continuum

	Add a continuum feature that follows a power-law.

	add_line

	Add an absorption line to the list of lines included in the spectrum.

	error_func

	Approximate the flux error for a spectrum.

	make_spectrum

	Make spectrum from ray data using the line list.

Attributes

	current_tau_field

	This is the optical depth array for the current absorption line being deposited.

	lambda_field

	The lambda field.

	tau_field

	This is the total optical depth of all lines and continua.

trident.absorption_spectrum.absorption_spectrum.AbsorptionSpectrum.__init__

	
AbsorptionSpectrum.__init__(lambda_min, lambda_max, n_lambda=None, dlambda=None, bin_space='wavelength')

	

trident.absorption_spectrum.absorption_spectrum.AbsorptionSpectrum.add_continuum

	
AbsorptionSpectrum.add_continuum(label, field_name, wavelength, normalization, index)

	Add a continuum feature that follows a power-law.

Parameters

	Label

	string

label for the feature.

	Field_name

	string

field name from ray data for column densities.

	Wavelength

	float

line rest wavelength in angstroms.

	Normalization

	float

the column density normalization.

	Index

	float

the power-law index for the wavelength dependence.

trident.absorption_spectrum.absorption_spectrum.AbsorptionSpectrum.add_line

	
AbsorptionSpectrum.add_line(label, field_name, wavelength, f_value, gamma, atomic_mass, label_threshold=None)

	Add an absorption line to the list of lines included in the spectrum.

Parameters

	Label

	string

label for the line.

	Field_name

	string

field name from ray data for column densities.

	Wavelength

	float

line rest wavelength in angstroms.

	F_value

	float

line f-value.

	Gamma

	float

line gamme value.

	Atomic_mass

	float

mass of atom in amu.

trident.absorption_spectrum.absorption_spectrum.AbsorptionSpectrum.error_func

	
AbsorptionSpectrum.error_func(flux)

	Approximate the flux error for a spectrum.
Many observational analysis programs require a flux error channel
in addition to a flux channel. So we create a zeroth order
approximation of the flux error, simply by taking the square root
of the flux. Unfortunately, with flux normalized to be < 1, this
would result in errors larger than the flux values themselves,
so we normalize by an arbitrary signal-to-noise ratio, which by default
is set to 100. This yields a typical error for a normalized spectrum of
sqrt(1.0*100)/100 = 0.1. This assures our flux errors are smaller
than our fluxes for most flux reasonable flux values. Note that
when a signal to noise ratio is specified for adding gaussian noise,
it uses this updated value for estimating the errors. SNR is set
as an attribute of AbsorptionSpectrum directly (e.g., as.snr = N).

Parameters

	Flux

	array of floats

The array of flux values

trident.absorption_spectrum.absorption_spectrum.AbsorptionSpectrum.make_spectrum

	
AbsorptionSpectrum.make_spectrum(input_object, output_file=None, line_list_file=None, output_absorbers_file=None, use_peculiar_velocity=True, store_observables=False, subgrid_resolution=10, observing_redshift=0.0, min_tau=0.001, njobs='auto')

	Make spectrum from ray data using the line list.

Parameters

	Input_object

	string, dataset, or data container

If a string, the path to the ray dataset. As a dataset,
this is the ray dataset loaded by yt. As a data container,
this is a data object created from a ray dataset, such as
a cut region.

	Output_file

	optional, string

Option to save a file containing the wavelength, flux, and optical
depth fields. File formats are chosen based on the filename
extension. .h5 for hdf5, .fits for fits, and everything
else is ASCII.
Default: None

	Output_absorbers_file

	optional, string

Option to save a text file containing all of the absorbers and
corresponding wavelength and redshift information.
For parallel jobs, combining the lines lists can be slow so it
is recommended to set to None in such circumstances.
Default: None

	Use_peculiar_velocity

	optional, bool

if True, include peculiar velocity for calculating doppler redshift
to shift lines. Requires similar flag to be set in LightRay
generation.
Default: True

	Store_observables

	optional, bool

if True, stores observable properties of each cell along the line of
sight for each line, such as tau, column density, and thermal b.
These quantities will be saved to the AbsorptionSpectrum
attribute: ‘line_observables_dict’.
Default: False

	Subgrid_resolution

	optional, int

When a line is being added that is unresolved (ie its thermal
width is less than the spectral bin width), the voigt profile of
the line is deposited into an array of virtual wavelength bins at
higher resolution. The optical depth from these virtual bins is
integrated and then added to the coarser spectral wavelength bin.
The subgrid_resolution value determines the ratio between the
thermal width and the bin width of the virtual bins. Increasing
this value yields smaller virtual bins, which increases accuracy,
but is more expensive. A value of 10 yields accuracy to the 4th
significant digit in tau.
Default: 10

	Observing_redshift

	optional, float

This is the redshift at which the observer is observing
the absorption spectrum.
Default: 0

	Min_tau

	optional, float

This value determines size of the wavelength window used to
deposit lines or continua. The wavelength window is expanded
until the optical depth at the edge is below this value. If too
high, this will result in features appearing cut off at the edges.
Decreasing this will make features smoother but will also increase
run time. An increase by a factor of ten will result in roughly a
2x slow down.
Default: 1e-3.

	Njobs

	optional, int or “auto”

the number of process groups into which the loop over
absorption lines will be divided. If set to -1, each
absorption line will be deposited by exactly one processor.
If njobs is set to a value less than the total number of
available processors (N), then the deposition of an
individual line will be parallelized over (N / njobs)
processors. If set to “auto”, it will first try to
parallelize over the list of lines and only parallelize
the line deposition if there are more processors than
lines. This is the optimal strategy for parallelizing
spectrum generation.
Default: “auto”

trident.absorption_spectrum.absorption_spectrum.AbsorptionSpectrum.current_tau_field

	
property AbsorptionSpectrum.current_tau_field

	This is the optical depth array for the current absorption line
being deposited. We will do the deposition of lines into this
array, and then add it to self.tau_field at the end.

trident.absorption_spectrum.absorption_spectrum.AbsorptionSpectrum.lambda_field

	
property AbsorptionSpectrum.lambda_field

	The lambda field.

trident.absorption_spectrum.absorption_spectrum.AbsorptionSpectrum.tau_field

	
property AbsorptionSpectrum.tau_field

	This is the total optical depth of all lines and continua.

trident.instrument.Instrument

	
class trident.instrument.Instrument(lambda_min, lambda_max, n_lambda=None, dlambda=None, lsf_kernel=None, bin_space='wavelength', name=None)

	An instrument class for specifying a spectrograph/telescope pair

Parameters

	Lambda_min

	float or YTQuantity

Minimum desired wavelength for generated spectrum in angstroms

	Lambda_max

	float or YTQuantity

Maximum desired wavelength for generated spectrum in angstroms

	N_lambda

	int

Number of desired wavelength bins for the spectrum
Setting dlambda overrides n_lambda value
Default: None

	Dlambda

	float or YTQuantity

Desired bin width for the spectrum in angstroms
Setting dlambda overrides n_lambda value
Default: None

	Lsf_kernel

	string

The filename for the LSF kernel
Default: None

	Name

	string

Name assigned to the Instrument object
Default: None

Methods

	__init__

	

trident.instrument.Instrument.__init__

	
Instrument.__init__(lambda_min, lambda_max, n_lambda=None, dlambda=None, lsf_kernel=None, bin_space='wavelength', name=None)

	

trident.lsf.LSF

	
class trident.lsf.LSF(function=None, width=None, filename=None)

	A class representing a spectrograph’s line spread function.

A line spread function can be defined either by a function and width
or by a filename containing a custom kernel.

Parameters

	Function

	string, optional

The function defining the LSF kernel.
valid functions are “boxcar” or “gaussian”

	Width

	int, optional

The width of the LSF kernel in bins.

	Filename

	string, optional

The filename of a textfile for a user-specified kernel. Each line
in the textfile contains a normalized flux value of the kernel.
For examples, see contents of trident.__path__/data/lsf_kernels
Trident searches for these files either in the aforementioned
directory or in the execution directory.

Examples

Generate an LSF based on a text file:

>>> LSF(filename='avg_COS.txt')

Generate a boxcar-based LSF:

>>> LSF(function='boxcar', width=30)

Generate a gaussian-based LSF:

>>> LSF(function='guassian', width=7)

Methods

	__init__

	

trident.lsf.LSF.__init__

	
LSF.__init__(function=None, width=None, filename=None)

	

trident.line_database.Line

	
class trident.line_database.Line(element, ion_state, wavelength, gamma, f_value, field=None, identifier=None)

	A class representing an individual atomic transition. Each Line object
is uniquely identified by element, ionic state, wavelength, gamma,
oscillator strength, and identifier.

Parameters

	Element

	string

The element of the transition using element’s symbol on periodic table
Example: ‘H’, ‘C’, ‘Mg’

	Ion_state

	string

The roman numeral representing the ionic state of the transition
Example: ‘I’ for neutral species, ‘II’ for singly ionized, etc.

	Wavelength

	float

The wavelength of the transition in angstroms
Example: 1216 for Lyman alpha

	Gamma

	float

The gamma of the transition in Hertz

	F_value

	float

The oscillator strength of the transition

	Field

	string, optional

The default yt field name associated with the ion responsible for
this line
Example: ‘H_p1_number_density’ for HII

	Identifier

	string, optional

An optional identifier for the transition
Example: ‘Ly a’ for Lyman alpha

Example

Create a Line object for the neutral hydrogen 1215 Angstroms transition.

>>> HI = Line('H', 'I', 1215.67, 469860000, 0.41641, 'Ly a')

Methods

	__init__

	

trident.line_database.Line.__init__

	
Line.__init__(element, ion_state, wavelength, gamma, f_value, field=None, identifier=None)

	

trident.line_database.LineDatabase

	
class trident.line_database.LineDatabase(input_file=None)

	Class for storing and selecting collections of spectral lines. These lines
will be used in the SpectrumGenerator and
add_ion_fields() functionality.

Without arguments, the LineDatabase will be empty, and you must
manually add individual lines to it using the
add_line function.
If LineDatabase is provided with an optional :input_file:, it will
automatically add spectral lines for each corresponding line in the list.

Once created, you can select a subset of the total lines present in
the database for further use. Use the
parse_subset
function to accomplish this.

Parameters

	Input_file

	string, optional

An optional input_file can be provided to pre-store a list of Line
objects. input_file should be a tab delimited text file of the
format:

element, ion_state, wavelength, gamma, f_value, (name)

H, I, 1215.67, 4.69e8, 4.16e-1, Ly a

Example

>>> # Create a LineDatabase using the lines present in lines.txt
>>> ldb = LineDatabase('lines.txt')

>>> # Parse ldb and only select Lyman alpha, Mg II and Fe lines
>>> lines = ldb.parse_subset(lines=['H I 1216', 'Mg II', 'Fe'])
>>> print(lines)

Methods

	__init__

	

	add_line

	Manually add a line to the LineDatabase.

	load_line_list_from_file

	Load a line list from a file into the LineDatabase.

	parse_subset

	Select multiple lines based on atom, ion state, identifier, and/or wavelength.

	parse_subset_to_ions

	Select ions based on those needed to create specific lines.

	select_lines

	Select lines based on atom, ion state, identifier, and/or wavelength.

trident.line_database.LineDatabase.__init__

	
LineDatabase.__init__(input_file=None)

	

trident.line_database.LineDatabase.add_line

	
LineDatabase.add_line(element, ion_state, wavelength, gamma, f_value, field=None, identifier=None)

	Manually add a line to the LineDatabase.

Parameters

	Element

	string

The element of the transition using element’s symbol on periodic table
Example: ‘H’, ‘C’, ‘Mg’

	Ion_state

	string

The roman numeral representing the ionic state of the transition
Example: ‘I’ for neutral species, ‘II’ for singly ionized, etc.

	Wavelength

	float

The wavelength of the transition in angstroms
Example: 1216 for Lyman alpha

	Gamma

	float

The gamma of the transition in Hertz

	F_value

	float

The oscillator strength of the transition

	Field

	string, optional

The default yt field name associated with the ion responsible for
this line
Example: ‘H_p1_number_density’ for HII

	Identifier

	string, optional

An optional identifier for the transition
Example: ‘Ly a’ for Lyman alpha

Example

>>> # Create a LineDatabase using the lines present in lines.txt
>>> ldb = LineDatabase('lines.txt')

>>> # Manually add the neutral hydrogen line to ldb
>>> ldb.add_line('H', 'I', 1215.67, 469860000, 0.41641, 'Ly a')
>>> print(ldb.lines_all)

trident.line_database.LineDatabase.load_line_list_from_file

	
LineDatabase.load_line_list_from_file(filename)

	Load a line list from a file into the LineDatabase.
Line list file is a tab-delimited text file in the format:

element, ion_state, wavelength, gamma, f_value, (name)

H, I, 1215.67, 4.69e8, 4.16e-1, Ly a

Parameters

filename : string

The filename of the list to add. First looks in
trident.__path__/data/line_lists directory, then in cwd.

trident.line_database.LineDatabase.parse_subset

	
LineDatabase.parse_subset(subsets='all')

	Select multiple lines based on atom, ion state, identifier, and/or
wavelength. Once you’ve created a LineDatabase, you can subselect
certain lines from it based on line characteristics. Preferred to
use this method over select_lines.

Will return the unique union of all lines matching the specified
subsets from the LineDatabase.

Parameters

	Subsets

	list of strings, optional

List strings matching possible lines. Strings can be of the
form:
* Atom - Examples: “H”, “C”, “Mg”
* Ion - Examples: “H I”, “H II”, “C IV”, “Mg II”
* Line - Examples: “H I 1216”, “C II 1336”, “Mg II 1240”
* Identifier - Examples: “Ly a”, “Ly b”

If set to None, selects all lines in
LineDatabase.
Default: None

Returns

	Line subset

	list of trident.Line objects

A list of the Lines that were selected

Example

>>> # Get a list of all lines of Carbon, Mg II and Lyman alpha
>>> ldb = LineDatabase('lines.txt')
>>> lines = ldb.parse_subset(['C', 'Mg II', 'H I 1216'])
>>> print(lines)

trident.line_database.LineDatabase.parse_subset_to_ions

	
LineDatabase.parse_subset_to_ions(subsets=None)

	Select ions based on those needed to create specific lines.
Once you’ve created a LineDatabase, you can subselect
certain ions from it based on the line characteristics of atom,
ion state, identifier, and/or wavelength. Similar to
parse_subset but outputs a list of
ion tuples (e.g. (‘H’, 1), (‘Fe’, 2)), instead of a list of
Line objects.

Will return the unique union of all ions matching the specified
subsets from the LineDatabase.

Parameters

	Subsets

	list of strings, optional

List strings matching possible lines. Strings can be of the
form:
* Atom - Examples: “H”, “C”, “Mg”
* Ion - Examples: “H I”, “H II”, “C IV”, “Mg II”
* Line - Examples: “H I 1216”, “C II 1336”, “Mg II 1240”
* Identifier - Examples: “Ly a”, “Ly b”

If set to None, selects ions necessary to produce all lines
in LineDatabase.
Default: None

Returns

	Ion subset

	list of ion tuples

A list of the ions necessary to produce the desired lines
Each ion tuple is of the form (‘H’, 1) = neutral hydrogen

Example

Get a list of all ions necessary to generate lines for Carbon,
Mg II and Lyman alpha

>>> ldb = LineDatabase('lines.txt')
>>> ions = ldb.parse_subset_to_ions(['C', 'Mg II', 'H I 1216'])
>>> print(ions)

trident.line_database.LineDatabase.select_lines

	
LineDatabase.select_lines(element=None, ion_state=None, wavelength=None, identifier=None, source_list=None)

	Select lines based on atom, ion state, identifier, and/or wavelength.
Once you’ve created a LineDatabase, you can subselect certain lines
from it based on line characteristics. Recommended to use
parse_subset instead which allows
selecting of multiple sets of lines simultaneously.

Parameters

	Element

	string, optional

The element of the transition using element’s symbol on periodic table
Example: ‘H’, ‘C’, ‘Mg’
Default: None

	Ion_state

	string, optional

The roman numeral representing the ionic state of the transition
Example: ‘I’ for neutral species, ‘II’ for singly ionized, etc.
Default: None

	Wavelength

	float, optional

The wavelength of the transition in angstroms
Example: 1216 for Lyman alpha
Default: None

	Identifier

	string, optional

An optional identifier for the transition
Example: ‘Ly a’ for Lyman alpha
Default: None

	Source_list

	list of Line objects, optional

The source list from which to select lines. If set to None,
use the LineDatabase’s list ‘lines_all’.
Default: None

Returns

	Selected_lines

	list

A list of which lines were selected.

Example

>>> ldb = LineDatabase('lines.txt')
>>> selected_lines = ldb.select_lines(element='Mg', ion_state='II')

trident.spectrum_generator.load_spectrum

	
trident.spectrum_generator.load_spectrum(filename, format='auto', instrument=None, lsf_kernel=None, line_database='lines.txt', ionization_table=None)

	Load a previously saved spectrum from disk.

Parameters

	Filename

	string

Filename of the saved spectrum.

	Format

	string

File format of the saved spectrum file. Valid values are: “auto”,
“hdf5”, “fits”, and “ascii”. If you select “auto”, the code will
attempt to auto-detect the file format from the extension of the data
file: “.h5” or “.hdf5” -> hdf5, “.fits” or “.FITS” -> fits, all other
-> ascii.
Default: “auto”

	Instrument

	string, optional

The telescope+instrument combination to use for the loaded spectrum.
Default: None

	Lsf_kernel

	string, optional

The filename for the LSF kernel to use for the loaded spectrum.
Default: None

	Line_database

	string, optional

A text file listing the various lines to insert into the line database
to use for the loaded spectrum.
Default: None

	Ionization_table

	hdf5 file, optional

An HDF5 file used for computing the ionization fraction of the gas
based on its density, temperature, metallicity, and redshift.
Default: None

Example

Create a simple spectrum, save it to disk, and load it back as a new
SpectrumGenerator object.

>>> import trident
>>> ray = trident.make_onezone_ray()
>>> sg = trident.SpectrumGenerator('COS')
>>> sg.make_spectrum(ray)
>>> sg.save_spectrum('spec.h5')
>>> sg_copy = trident.load_spectrum('spec.h5')

trident.spectrum_generator.plot_spectrum

	
trident.spectrum_generator.plot_spectrum(wavelength, flux, filename='spectrum.png', lambda_limits=None, flux_limits=None, title=None, label=None, figsize=None, step=False, stagger=0.2, features=None, axis_labels=None)

	Plot a spectrum or a collection of spectra and save to disk.

This function wraps some Matplotlib plotting functionality for
plotting spectra generated with the SpectrumGenerator.
In its simplest form, it accepts a wavelength array consisting of
wavelength values and a corresponding flux array consisting of relative
flux values, and it plots them and saves to disk.

In addition, it can plot several spectra on the same axes simultaneously
by passing a list of arrays to the wavelength, flux arguments
(and optionally to the label and step keywords).

Returns the Matplotlib Figure object for further processing.

Parameters

	Wavelength

	array of floats or list of arrays of floats

Wavelength values in angstroms. Either as an array of floats in the
case of plotting a single spectrum, or as a list of arrays of floats
in the case of plotting several spectra on the same axes.

	Flux

	array of floats or list of arrays of floats

Relative flux values (from 0 to 1) corresponding to wavelength array.
Either as an array of floats in the case of plotting a single
spectrum, or as a list of arrays of floats in the case of plotting
several spectra on the same axes.

	Filename

	string, optional

Output filename of the plotted spectrum. Will be a png file.
Default: ‘spectrum.png’

	Lambda_limits

	tuple or list of floats, optional

The minimum and maximum of the wavelength range (x-axis) for the plot
in angstroms. If specified as None, will use whole lambda range
of spectrum. Example: (1200, 1400) for 1200-1400 Angstroms
Default: None

	Flux_limits

	tuple or list of floats, optional

The minimum and maximum of the flux range (y-axis) for the plot.
If specified as None, limits are automatically from
[0, 1.1*max(flux)]. Example: (0, 1) for normal flux range before
postprocessing.
Default: None

	Step

	boolean or list of booleans, optional

Plot the spectrum as a series of step functions. Appropriate for
plotting processed and noisy data. Use a list of booleans when
plotting multiple spectra, where each boolean corresponds to the entry
in the wavelength and flux lists.

	Title

	string, optional

Optional title for plot
Default: None

	Label

	string or list of strings, optional

Label for each spectrum to be plotted. Useful if plotting multiple
spectra simultaneously. Will automatically trigger a legend to be
generated.
Default: None

	Stagger

	float, optional

If plotting multiple spectra on the same axes, do we offset them in
the y direction? If set to None, no. If set to a float, stagger them
by the flux value specified by this parameter.

	Features

	dict, optional

Include vertical lines with labels to represent certain spectral
features. Each entry in the dictionary consists of a key string to
be overplot and the value float as to where in wavelength space it
will be plot as a vertical line with the corresponding label.

Example: features={‘Ly a’ : 1216, ‘Ly b’ : 1026}

Default: None

	Axis_labels

	tuple of strings, optional

Optionally set the axis labels directly. If set to None, defaults to
(‘Wavelength [$rmAA$]’, ‘Relative Flux’).
Default: None

Returns

Matplotlib Figure object for further processing

Example

Plot a flat spectrum

>>> import numpy as np
>>> import trident
>>> wavelength = np.arange(1200, 1400)
>>> flux = np.ones(len(wavelength))
>>> trident.plot_spectrum(wavelength, flux)

Generate a one-zone ray, create a Lyman alpha spectrum from it, and add
gaussian noise to it. Plot both the raw spectrum and the noisy spectrum
on top of each other.

>>> import trident
>>> ray = trident.make_onezone_ray(column_densities={'H_p0_number_density':1e21})
>>> sg_final = trident.SpectrumGenerator(lambda_min=1200, lambda_max=1300, dlambda=0.5)
>>> sg_final.make_spectrum(ray, lines=['Ly a'])
>>> sg_final.save_spectrum('spec_raw.h5')
>>> sg_final.add_gaussian_noise(10)
>>> sg_raw = trident.load_spectrum('spec_raw.h5')
>>> trident.plot_spectrum([sg_raw.lambda_field, sg_final.lambda_field],
... [sg_raw.flux_field, sg_final.flux_field], stagger=0, step=[False, True],
... label=['Raw', 'Noisy'], filename='raw_and_noise.png')

trident.ion_balance.add_ion_fields

	
trident.ion_balance.add_ion_fields(ds, ions, ftype='gas', ionization_table=None, field_suffix=False, line_database=None, sampling_type='local', particle_type=None)

	Preferred method for adding ion fields to a yt dataset.

Select ions based on the selection indexing set up in
parse_subset_to_ions function, that is,
by specifying a list of strings where each string represents an ion or
line. Strings are of one of three forms:

	<element>

	<element> <ion state>

	<element> <ion state> <line_wavelength>

If a line_database is selected, then the ions chosen will be a subset
of the ions present in the equivalent LineDatabase,
nominally located in trident.__path__/data/line_lists.

For each ion species selected, four fields will be added (example for
Mg II):

	Ion fraction field. e.g. (“gas”, ‘Mg_p1_ion_fraction’)

	Number density field. e.g. (“gas”, ‘Mg_p1_number_density’)

	Density field. e.g. (“gas”, ‘Mg_p1_density’)

	Mass field. e.g. (“gas”, ‘Mg_p1_mass’)

This function is the preferred method for adding ion fields to one’s
dataset, but for more fine-grained control, one can also employ the
add_ion_fraction_field,
add_ion_number_density_field,
add_ion_density_field,
add_ion_mass_field functions individually.

Fields are added assuming collisional ionization equilibrium and
photoionization in the optically thin limit from a redshift-dependent
metagalactic ionizing background using the ionization_table specified.

Parameters

	Ds

	yt dataset object

This is the dataset to which the ion fraction field will be added.

	Ions

	list of strings

List of strings matching possible lines. Strings can be of the
form:
* Atom - Examples: “H”, “C”, “Mg”
* Ion - Examples: “H I”, “H II”, “C IV”, “Mg II”
* Line - Examples: “H I 1216”, “C II 1336”, “Mg II 1240”

If set to ‘all’, creates all ions for the first 30 elements:
(ie hydrogen to zinc). If set to ‘all’ with line_database
keyword set, then creates all ions associated with the lines
specified in the equivalent LineDatabase.

	Ionization_table

	string, optional

Path to an appropriately formatted HDF5 table that can be used to
compute the ion fraction as a function of density, temperature,
metallicity, and redshift. When set to None, it uses the table
specified in ~/.trident/config
Default: None

	Field_suffix

	boolean, optional

Determines whether or not to append a suffix to the field name that
indicates what ionization table was used. Useful when using generating
ion_fields that already exist in a dataset.

	Line_database

	string, optional

Ions are selected out of the set of ions present in the line_database
constructed from the line list filename specified here. See
LineDatabase for more information.

	Ftype

	string, optional

This is deprecated and no longer necessary since all relevant
fields are aliased to the ‘gas’ ftype.
Default: ‘gas’

	Sampling_type

	string, optional

This is deprecated and no longer necessary.
Default: ‘local’

	Particle_type

	boolean, optional

This is deprecated and no longer necessary.
Default: ‘auto’

Example

To add ionized hydrogen, doubly-ionized Carbon, and all of the Magnesium
species fields to a dataset, you would run:

>>> import yt
>>> import trident
>>> ds = yt.load('path/to/file')
>>> trident.add_ion_fields(ds, ions=['H II', 'C III', 'Mg'])

trident.ion_balance.add_ion_fraction_field

	
trident.ion_balance.add_ion_fraction_field(atom, ion, ds, ftype='gas', ionization_table=None, field_suffix=False, sampling_type='local', particle_type=None)

	Add ion fraction field to a yt dataset for the desired ion.

Note

The preferred method for adding ion fields to a dataset is using
add_ion_fields,

For example, add_ion_fraction_field(‘O’, 6, ds) creates a field
called O_p5_ion_fraction for dataset ds, which represents 5-ionized
oxygen (O plus 5 = O VI = ‘O’, 6).

Fields are added assuming collisional ionization equilibrium and
photoionization in the optically thin limit from a redshift-dependent
metagalactic ionizing background using the ionization_table specified.

Parameters

	Atom

	string
Atomic species for desired ion fraction (e.g. ‘H’, ‘C’, ‘Mg’)

	Ion

	integer
Ion number for desired species (e.g. 1 = neutral, 2 = singly ionized,
3 = doubly ionized, etc.)

	Ds

	yt dataset object
This is the dataset to which the ion fraction field will be added.

	Ftype

	string, optional

This is deprecated and no longer necessary since all relevant
fields are aliased to the ‘gas’ ftype.
Default: ‘gas’

	Ionization_table

	string, optional
Path to an appropriately formatted HDF5 table that can be used to
compute the ion fraction as a function of density, temperature,
metallicity, and redshift. By default, it uses the table specified in
~/.trident/config

	Field_suffix

	boolean, optional
Determines whether or not to append a suffix to the field name that
indicates what ionization table was used

	Sampling_type

	string, optional

This is deprecated and no longer necessary.
Default: ‘local’

	Particle_type

	boolean, optional

This is deprecated and no longer necessary.
Default: ‘auto’

Example

Add C IV (triply-ionized carbon) ion fraction field to dataset

>>> import yt
>>> import trident
>>> ds = yt.load('path/to/file')
>>> trident.add_ion_fraction_field('C', 4, ds)
>>> yt.ProjectionPlot(ds, 'x', 'C_p3_ion_fraction').save()

trident.ion_balance.add_ion_number_density_field

	
trident.ion_balance.add_ion_number_density_field(atom, ion, ds, ftype='gas', ionization_table=None, field_suffix=False, sampling_type='local', particle_type=None)

	Add ion number density field to a yt dataset for the desired ion.

Note

The preferred method for adding ion fields to a dataset is using
add_ion_fields,

For example, add_ion_number_density_field(‘O’, 6, ds) creates a field
called O_p5_number_density for dataset ds, which represents 5-ionized
oxygen (O plus 5 = O VI).

Fields are added assuming collisional ionization equilibrium and
photoionization in the optically thin limit from a redshift-dependent
metagalactic ionizing background using the ionization_table specified.

Parameters

	Atom

	string

Atomic species for desired ion fraction (e.g. ‘H’, ‘C’, ‘Mg’)

	Ion

	integer

Ion number for desired species (e.g. 1 = neutral, 2 = singly ionized,
3 = doubly ionized, etc.)

	Ds

	yt dataset object

This is the dataset to which the ion fraction field will be added.

	Ftype

	string, optional

This is deprecated and no longer necessary since all relevant
fields are aliased to the ‘gas’ ftype.
Default: ‘gas’

	Ionization_table

	string, optional

Path to an appropriately formatted HDF5 table that can be used to
compute the ion fraction as a function of density, temperature,
metallicity, and redshift. By default, it uses the table specified in
~/.trident/config

	Field_suffix

	boolean, optional

Determines whether or not to append a suffix to the field
name that indicates what ionization table was used

	Sampling_type

	string, optional

This is deprecated and no longer necessary.
Default: ‘local’

	Particle_type

	boolean, optional

This is deprecated and no longer necessary.
Default: ‘auto’

Example

Add C IV (triply-ionized carbon) number density field to dataset

>>> import yt
>>> import trident
>>> ds = yt.load('path/to/file')
>>> trident.add_ion_number_density('C', 4, ds)
>>> yt.ProjectionPlot(ds, 'x', 'C_p3_number_density').save()

trident.ion_balance.add_ion_density_field

	
trident.ion_balance.add_ion_density_field(atom, ion, ds, ftype='gas', ionization_table=None, field_suffix=False, sampling_type='local', particle_type=None)

	Add ion mass density field to a yt dataset for the desired ion.

Note

The preferred method for adding ion fields to a dataset is using
add_ion_fields,

For example, add_ion_density_field(‘O’, 6, ds) creates a field
called O_p5_density for dataset ds, which represents 5-ionized
oxygen (O plus 5 = O VI).

Fields are added assuming collisional ionization equilibrium and
photoionization in the optically thin limit from a redshift-dependent
metagalactic ionizing background using the ionization_table specified.

Parameters

	Atom

	string

Atomic species for desired ion fraction (e.g. ‘H’, ‘C’, ‘Mg’)

	Ion

	integer

Ion number for desired species (e.g. 1 = neutral, 2 = singly ionized,
3 = doubly ionized, etc.)

	Ds

	yt dataset object

This is the dataset to which the ion fraction field will be added.

	Ftype

	string, optional

This is deprecated and no longer necessary since all relevant
fields are aliased to the ‘gas’ ftype.
Default: ‘gas’

	Ionization_table

	string, optional

Path to an appropriately formatted HDF5 table that can be used to
compute the ion fraction as a function of density, temperature,
metallicity, and redshift. By default, it uses the table specified in
~/.trident/config

	Field_suffix

	boolean, optional

Determines whether or not to append a suffix to the field
name that indicates what ionization table was used

	Sampling_type

	string, optional

This is deprecated and no longer necessary.
Default: ‘local’

	Particle_type

	boolean, optional

This is deprecated and no longer necessary.
Default: ‘auto’

Example

Add C IV (triply-ionized carbon) mass density field to dataset

>>> import yt
>>> import trident
>>> ds = yt.load('path/to/file')
>>> trident.add_ion_density_field('C', 4, ds)
>>> yt.ProjectionPlot(ds, 'x', 'C_p3_density').save()

trident.ion_balance.add_ion_mass_field

	
trident.ion_balance.add_ion_mass_field(atom, ion, ds, ftype='gas', ionization_table=None, field_suffix=False, sampling_type='local', particle_type=None)

	Add ion mass field to a yt dataset for the desired ion.

Note

The preferred method for adding ion fields to a dataset is using
add_ion_fields,

For example, add_ion_mass_field(‘O’, 6, ds) creates a field
called O_p5_mass for dataset ds, which represents 5-ionized
oxygen (O plus 5 = O VI).

Fields are added assuming collisional ionization equilibrium and
photoionization in the optically thin limit from a redshift-dependent
metagalactic ionizing background using the ionization_table specified.

Parameters

	Atom

	string

Atomic species for desired ion fraction (e.g. ‘H’, ‘C’, ‘Mg’)

	Ion

	integer

Ion number for desired species (e.g. 1 = neutral, 2 = singly ionized,
3 = doubly ionized, etc.)

	Ds

	yt dataset object

This is the dataset to which the ion fraction field will be added.
will be added.

	Ftype

	string, optional

This is deprecated and no longer necessary since all relevant
fields are aliased to the ‘gas’ ftype.
Default: ‘gas’

	Ionization_table

	string, optional

Path to an appropriately formatted HDF5 table that can be used to
compute the ion fraction as a function of density, temperature,
metallicity, and redshift. By default, it uses the table specified in
~/.trident/config

	Field_suffix

	boolean, optional

Determines whether or not to append a suffix to the field
name that indicates what ionization table was used

	Sampling_type

	string, optional

This is deprecated and no longer necessary.
Default: ‘local’

	Particle_type

	boolean, optional

This is deprecated and no longer necessary.
Default: ‘auto’

Example

Add C IV (triply-ionized carbon) mass field to dataset

>>> import yt
>>> import trident
>>> ds = yt.load('path/to/file')
>>> trident.add_ion_mass_field('C', 4, ds)
>>> yt.ProjectionPlot(ds, 'x', 'C_p3_mass').save()

trident.utilities.make_onezone_dataset

	
trident.utilities.make_onezone_dataset(density=1e-26, temperature=1000, metallicity=0.3, domain_width=10.0)

	Create a one-zone hydro dataset for use as test data. The dataset
consists of a single cubicle cell of gas with hydro quantities specified in
the function kwargs. It makes an excellent test dataset through
which to send a sightline and test Trident’s capabilities for making
absorption spectra.

Using the defaults and passing a ray through the full domain should
result in a spectrum with a good number of absorption features.

Parameters

	Density

	float, optional

The gas density value of the dataset in g/cm**3
Default: 1e-26

	Temperature

	float, optional

The gas temperature value of the dataset in K
Default: 10**3

	Metallicity

	float, optional

The gas metallicity value of the dataset in Zsun
Default: 0.3

	Domain_width

	float, optional

The width of the dataset in kpc
Default: 10.

Returns

Example

Create a simple one-zone dataset, pass a ray through it, and generate
a COS spectrum for that ray.

>>> import trident
>>> ds = trident.make_onezone_dataset()
>>> ray = trident.make_simple_ray(ds,
... start_position=ds.domain_left_edge,
... end_position=ds.domain_right_edge,
... fields=['density', 'temperature', 'metallicity'])
>>> sg = trident.SpectrumGenerator('COS')
>>> sg.make_spectrum(ray)
>>> sg.plot_spectrum('spec_raw.png')

trident.utilities.make_onezone_ray

	
trident.utilities.make_onezone_ray(density=1e-26, temperature=1000, metallicity=0.3, length=10, redshift=0, filename='ray.h5', column_densities=None)

	Create a one-zone ray object for use as test data. The ray
consists of a single absorber of hydrodynamic characteristics
specified in the function kwargs. It makes an excellent test dataset
to test Trident’s capabilities for making absorption spectra.

You can specify the column densities of different ions explicitly using
the column_densities keyword, or you can let Trident calculate the
different ion columns internally from the density, temperature, and
metallicity fields.

Using the defaults will produce a ray that should result in a spectrum
with a good number of absorption features.

Parameters

	Density

	float, optional

The gas density value of the ray in g/cm**3
Default: 1e-26

	Temperature

	float, optional

The gas temperature value of the ray in K
Default: 10**3

	Metallicity

	float, optional

The gas metallicity value of the ray in Zsun
Default: 0.3

	Length

	float, optional

The length of the ray in kpc
Default: 10.

	Redshift

	float, optional

The redshift of the ray
Default: 0

	Filename

	string, optional

The filename to which to save the ray to disk. Due to the
mechanism for passing rays, the ray data must be saved to disk.
Default: ‘ray.h5’

	Column_densities

	dict, optional

The user can create a dictionary which adds more number density ion
fields to the ray. Each key in the dictionary should be the desired
ion field name according to the field name format:
i.e. “<ELEMENT>_p<IONSTATE>_number_density”
e.g. neutral hydrogen = “H_p0_number_density”.
The corresponding value for each key should be the desired column
density of that ion in cm**-2. See example below.
Default: None

Returns

A YT LightRay object

Example

Create a one-zone ray, and generate a COS spectrum from that ray.

>>> import trident
>>> ray = trident.make_onezone_ray()
>>> sg = trident.SpectrumGenerator('COS')
>>> sg.make_spectrum(ray)
>>> sg.plot_spectrum('spec_raw.png')

Create a one-zone ray with an HI column density of 1e21 (DLA) and generate
a COS spectrum from that ray for just the Lyman alpha line.

>>> import trident
>>> ds = trident.make_onezone_ray(column_densities={'H_p0_number_density': 1e21})
>>> sg = trident.SpectrumGenerator('COS')
>>> sg.make_spectrum(ray, lines=['Ly a'])
>>> sg.plot_spectrum('spec_raw.png')

trident.roman.to_roman

	
trident.roman.to_roman(n)

	Convert an integer to a Roman numeral. Only works for integers > 0.

Parameters

	N

	int

Integer to convert to Roman numeral

Returns

String representing the roman numeral equivalent of argument n.

Example

>>> num = to_roman(5)

trident.roman.from_roman

	
trident.roman.from_roman(s)

	Convert a Roman numeral to an integer.

Parameters

	S

	string

String representing Roman numeral. Examples: ‘I’, “II’, ‘XI’, “MCMXC”.

Returns

Integer value equivalent to s Roman numeral argument.

Example

>>> num = from_roman('V')

trident.config.trident_path

	
trident.config.trident_path()

	Return the path where the trident source is installed.
Useful for identifying where data files are (e.g. path/data). Note that
ion table datafiles are downloaded separate and placed in another
location according to the ~/.trident/config.tri file.

Example

>>> print(trident_path())

trident.config.trident

	
trident.config.trident()

	Print a Trident ASCII logo to the screen.

trident.config.verify

	
trident.config.verify(save=False)

	Verify that the bulk of Trident’s functionality is working. First, it
ensures that the user has a configuration file and ion table datafile,
and creates/downloads these files if they do not exist. Next, it
creates a single-cell grid-based dataset in memory, generates a ray
by sending a sightline through that dataset, then makes a spectrum from
the ray object. It saves all data to a tempdir before deleting it.

Parameters

	Save

	boolean, optional

By default, verify saves all of its outputs to a temporary directory
and then removes it upon completion. If you would like to see the
resulting data from verify(), set this to be True and it will save
a light ray, and raw and processed spectra in the current working
directory.
Default: False

Example

Verify Trident works.

>>> import trident
>>> trident.verify()

trident.absorption_spectrum.absorption_spectrum_fit.generate_total_fit

	
trident.absorption_spectrum.absorption_spectrum_fit.generate_total_fit(x, fluxData, orderFits, speciesDicts, minError=0.0001, complexLim=0.995, fitLim=0.97, minLength=3, maxLength=1000, splitLim=0.99, output_file=None)

	Fit an absorption-line spectrum into line profiles.

Fits the spectrum into absorption complexes and iteratively adds and
optimizes voigt profiles for each complex.

Parameters

	X

	
	ndarray

1d array of wavelengths

	FluxData

	
	ndarray

array of flux corresponding to the wavelengths given
in x. (needs to be the same size as x)

	OrderFits

	list

list of the names of the species in the order that they
should be fit. Names should correspond to the names of the species
given in speciesDicts. (ex: [‘lya’,’OVI’])

	SpeciesDicts

	dictionary

Dictionary of dictionaries (I’m addicted to dictionaries, I
confess). Top level keys should be the names of all the species given
in orderFits. The entries should be dictionaries containing all
relevant parameters needed to create an absorption line of a given
species (f,Gamma,lambda0) as well as max and min values for parameters
to be fit

	ComplexLim

	float, optional

Maximum flux to start the edge of an absorption complex. Different
from fitLim because it decides extent of a complex rather than
whether or not a complex is accepted.

	FitLim

	float,optional

Maximum flux where the level of absorption will trigger
identification of the region as an absorption complex. Default = .98.
(ex: for a minSize=.98, a region where all the flux is between 1.0 and
.99 will not be separated out to be fit as an absorbing complex, but
a region that contains a point where the flux is .97 will be fit
as an absorbing complex.)

	MinLength

	int, optional

number of cells required for a complex to be included.
default is 3 cells.

	MaxLength

	int, optional

number of cells required for a complex to be split up. Default
is 1000 cells.

	SplitLim

	float, optional

if attempting to split a region for being larger than maxlength
the point of the split must have a flux greater than splitLim
(ie: absorption greater than splitLim). Default= .99.

	Output_file

	string, optional

location to save the results of the fit.

Returns

	AllSpeciesLines

	dictionary

Dictionary of dictionaries representing the fit lines.
Top level keys are the species given in orderFits and the corresponding
entries are dictionaries with the keys ‘N’,’b’,’z’, and ‘group#’.
Each of these corresponds to a list of the parameters for every
accepted fitted line. (ie: N[0],b[0],z[0] will create a line that
fits some part of the absorption spectrum). ‘group#’ is a similar list
but identifies which absorbing complex each line belongs to. Lines
with the same group# were fit at the same time. group#’s do not
correlate between species (ie: an lya line with group number 1 and
an OVI line with group number 1 were not fit together and do
not necessarily correspond to the same region)

	YFit

	
	ndarray

array of flux corresponding to the combination of all fitted
absorption profiles. Same size as x.

Citation

If you use Trident for a research application, please cite the
Trident method paper [http://adsabs.harvard.edu/abs/2017ApJ...847...59H]
in your work with the bibtex entry below:

@ARTICLE{2017ApJ...847...59H,
 author = {{Hummels}, C.~B. and {Smith}, B.~D. and {Silvia}, D.~W.},
 title = "{Trident: A Universal Tool for Generating Synthetic Absorption Spectra from Astrophysical Simulations}",
 journal = {\apj},
 archivePrefix = "arXiv",
 eprint = {1612.03935},
 primaryClass = "astro-ph.IM",
 keywords = {cosmology: theory, methods: data analysis, methods: numerical, radiative transfer },
 year = 2017,
 month = sep,
 volume = 847,
 eid = {59},
 pages = {59},
 doi = {10.3847/1538-4357/aa7e2d},
 adsurl = {http://adsabs.harvard.edu/abs/2017ApJ...847...59H},
 adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}

Changelog

This document summarizes changes to the codebase from different releases.

Contributors

The CREDITS file [https://github.com/trident-project/trident/blob/main/CREDITS]
has an updated list of contributors to the codebase.

Version 1.3 (August 22, 2022)

This is a bug fix release and updates Trident to using yt-4, which has
a variety of improvements for Trident including full support for
particle-based datasets. See
yt 4 [https://yt-project.org/docs/dev/yt4differences.html].

Bug Fixes

	Enables trident to work on Windows.
(PR 136 [https://github.com/trident-project/trident/pull/136])

	Fix API docs.
(PR 160 [https://github.com/trident-project/trident/pull/160])

	Update docs.
(PR 175 [https://github.com/trident-project/trident/pull/175])

	Fixes stable release of the code.
(Issue 180 [https://github.com/trident-project/trident/issues/180])

Version 1.2.3 (March 18, 2020)

This is a bug fix release.

Enhancements

	Move testing to circleci.
(PR 109 [https://github.com/trident-project/trident/pull/109])

Bug Fixes

	Allow access to find_outputs kwarg from make_compound_ray.
(PR 126 [https://github.com/trident-project/trident/pull/126])

	Fix periodic rays.
(PR 125 [https://github.com/trident-project/trident/pull/125])

	Be more careful about limiting size of line deposition array.
(PR 106 [https://github.com/trident-project/trident/pull/106])

Version 1.2.2 (November 14, 2019)

This is a bug fix release.

Bug Fixes

	Shift wavelength of velocity center to redshift from light ray solution
(PR 102 [https://github.com/trident-project/trident/pull/102])

Version 1.2.1 (October 1, 2019)

This is a bug fix release.

Bug Fixes

	Logging info doesn’t use correct units
(PR 99 [https://github.com/trident-project/trident/pull/99])

Version 1.2 (September 19, 2019)

New Features

	Add support for creating spectra in velocity space
(PR 90 [https://github.com/trident-project/trident/pull/90])

	Add ability to set wavelength limits to ‘auto’
(PR 87 [https://github.com/trident-project/trident/pull/87])

	Add ability to make spectrum from data container
(PR 91 [https://github.com/trident-project/trident/pull/91])

Bug Fixes

	off by one error in subgrid index calculation
(PR 85 [https://github.com/trident-project/trident/pull/85])

	fixing error in _ion_mass
(PR 81 [https://github.com/trident-project/trident/pull/81])

	H_p0_number_density to default, H_number_density to alias
(PR 78 [https://github.com/trident-project/trident/pull/78])

	Implements a better way of calculating the redshift on the light ray
(PR 71 [https://github.com/trident-project/trident/pull/71])

	Assures that ion_fraction field reflects on-disk fields
(PR 64 [https://github.com/trident-project/trident/pull/64])

	Fix atomic data for Si II 1260 according to Morton 2003
(PR 43 [https://github.com/trident-project/trident/pull/43])

	A check to avoid failure when no continuum absorbers were found in the ray
(PR 39 [https://github.com/trident-project/trident/pull/39])

	Auto-addition of H_nuclei_density to a LightRay when present in the base dataset
(PR 39 [https://github.com/trident-project/trident/pull/39])

	Adding max_box_fraction as a kwarg to make_compound_ray
(PR 37 [https://github.com/trident-project/trident/pull/37])

	Updated trident_path() to be OS Independent
(PR 36 [https://github.com/trident-project/trident/pull/36])

	simplify setting up ion fields using the “local” field type
(PR 30 [https://github.com/trident-project/trident/pull/30])

	split and join filenames using os.sep instead of assuming unix
(PR 29 [https://github.com/trident-project/trident/pull/29])

	updated oscillator strengths and gamma’s for Si II 1206 and Si III 1260
(PR 25 [https://github.com/trident-project/trident/pull/25])

Minor Enhancements

	Calculating LOS velocity with relative velocities to account for bulk motion
(PR 93 [https://github.com/trident-project/trident/pull/93])

	Enabling use of output_absorbers_file kwarg in SpectrumGenerator
(PR 58 [https://github.com/trident-project/trident/pull/58])

	Switching imports from yt.analysis_modules to yt_astro_analysis
(PR 55 [https://github.com/trident-project/trident/pull/55])

	Enable passing in-memory LineDatabase to SpectrumGenerator
(PR 42 [https://github.com/trident-project/trident/pull/42])

	Added equivalent width calculation to line_observables_dict
(PR 40 [https://github.com/trident-project/trident/pull/40])

	Numerous documentation updates

	Updates and fixes to testing

Version 1.1 (November 18, 2017)

	Trident development has changed from mercurial to git, and the source has
moved from bitbucket to github. This was done in recognition that more
people interact with git/github than do with hg/bitbucket, as well as to
follow our major dependency yt in making the same transition. All previous
repository history (e.g., commits, versions, tags, etc.) is retained under
this transition. For users operating on the development branch of
Trident, you must re-install Trident in order to continue to get updates.
The installation instructions were updated accordingly.

	We totally rebuilt the testing interface to Trident, which includes
more coverage in unit tests and answer tests over both grid-based and
particle-based datasets. We now have continuous integration through
Travis [https://travis-ci.org/trident-project/trident] that tests the code
daily and with each new pull request to assure consistent code results and to
minimize bugs. For more information, see Testing.

	Much of the original Trident codebase was developed in yt as the base classes
AbsorptionSpectrum
and LightRay. We have now stripped these classes out of
yt and moved them entirely into Trident for more flexibility, stability, and
autonomy moving forward. This should not affect the user as these changes
were behind the scenes.

	Added store_observables keyword to
make_spectrum() to store a
dictionary of observable properties (e.g., tau, column density, and thermal_b)
for each cell along a line of sight for use in post-processing. See source
of SpectrumGenerator for more information.

	Added an approximate flux_error field to output spectra, since many
observational tools require its presence. See
error_func()
for more details.

	Made min_tau a keyword to
make_spectrum() to enable higher precision
(although more time intensive) absorption line deposition.

	Added ability to specify an arbitrary noise vector with
add_noise_vector().

	A bugfix [https://github.com/yt-project/yt/pull/1611] was made
in yt to the temperature field for Gadget-based code outputs. The internal
energy field was mistakenly being read in co-moving instead of physical units,
which led to gas temperatures being low by a factor of (1+z).
This is now resolved in yt dev and thus we recommend Trident users use
yt dev until yt 3.5 stable is released.

	Another bugfix [https://github.com/astropy/astropy/pull/5782] was made
in Trident dependency astropy [https://github.com/astropy/astropy/] to
the convolve function, which is used in
apply_lsf(). This may cause slight
backwards-incompatible changes when applying line spread functions to
post-process spectra.

	Replaced internal instances of particle_type with sampling_type to
match similar yt conversion.

Version 1.0 (November 16, 2017)

Initial release. See our method paper for details.

	Create absorption-line spectra for any trajectory through a simulated
data set mimicking both background quasar and down-the-barrel configurations.

	Reproduce the spectral characteristics of common instruments like the
Cosmic Origins Spectrograph.

	Operate across the ultraviolet, optical, and infrared using customizable
absorption-line lists.

	Trace simulated physical structures directly to spectral features.

	Approximate the presence of ion species absent from the simulation outputs.

	Generate column density maps for any ion.

	Provide support for all major astrophysical hydrodynamical codes.

Help

If you run into problems with any aspect of Trident, please follow the
steps below. Don’t worry, we’ll help you get it sorted out.

Update the Code

The documentation is built for the latest version of Trident. Try
Updating to the Latest Version to assure your code matches what the documentation describes.
Remember to update to the latest version of yt too [http://yt-project.org/docs/dev/installing.html#updating-yt-and-its-dependencies].

Search Documentation and Mailing List Archives

Most use cases for Trident can be found in our documentation and method paper.
Try searching through the documentation using the search window in the upper
left part of the screen.

If that doesn’t work, try looking at specific problems we might have
addressed in our Frequently Asked Questions.

Lastly, try searching the archives of our mailing list. Chances are that
someone else may have encountered the problem that you have and already
wrote to the list. You can search the list here [https://groups.google.com/forum/#!forum/trident-project-users].

Contact our Mailing List

Compose a message to our low-volume mailing list. Remember to
include details like the operating system you’re using, the type of dataset
you’re trying to reduce, the version of Trident and yt you’re using (find it
out here), and of course, a description of
the problem you’re having with any relevant traceback errors.
Our mailing list is located here:

https://groups.google.com/forum/#!forum/trident-project-users

Join our Slack Channel

We have a slack channel for help and discussions amongst the users and
developers of Trident. You can generate an invite for yourself by clicking
on this link [https://join.slack.com/t/trident-project/shared_invite/zt-42h0uuwy-fBggZbeymnq2cB9ivtWloA] and following the instructions.

Index

 _
 | A
 | C
 | E
 | F
 | G
 | I
 | L
 | M
 | P
 | S
 | T
 | V

_

 	
 	__init__() (trident.absorption_spectrum.absorption_spectrum.AbsorptionSpectrum method)

 	(trident.instrument.Instrument method)

 	(trident.light_ray.LightRay method)

 	(trident.line_database.Line method)

 	(trident.line_database.LineDatabase method)

 	(trident.lsf.LSF method)

 	(trident.spectrum_generator.SpectrumGenerator method)

A

 	
 	AbsorptionSpectrum (class in trident.absorption_spectrum.absorption_spectrum)

 	add_continuum() (trident.absorption_spectrum.absorption_spectrum.AbsorptionSpectrum method)

 	(trident.spectrum_generator.SpectrumGenerator method)

 	add_gaussian_noise() (trident.spectrum_generator.SpectrumGenerator method)

 	add_ion_density_field() (in module trident.ion_balance)

 	add_ion_fields() (in module trident.ion_balance)

 	add_ion_fraction_field() (in module trident.ion_balance)

 	add_ion_mass_field() (in module trident.ion_balance)

 	
 	add_ion_number_density_field() (in module trident.ion_balance)

 	add_line() (trident.absorption_spectrum.absorption_spectrum.AbsorptionSpectrum method)

 	(trident.line_database.LineDatabase method)

 	(trident.spectrum_generator.SpectrumGenerator method)

 	add_line_to_database() (trident.spectrum_generator.SpectrumGenerator method)

 	add_milky_way_foreground() (trident.spectrum_generator.SpectrumGenerator method)

 	add_noise_vector() (trident.spectrum_generator.SpectrumGenerator method)

 	add_qso_spectrum() (trident.spectrum_generator.SpectrumGenerator method)

 	apply_lsf() (trident.spectrum_generator.SpectrumGenerator method)

C

 	
 	clear_spectrum() (trident.spectrum_generator.SpectrumGenerator method)

 	create_cosmology_splice() (trident.light_ray.LightRay method)

 	
 	current_tau_field (trident.absorption_spectrum.absorption_spectrum.AbsorptionSpectrum property)

 	(trident.spectrum_generator.SpectrumGenerator property)

E

 	
 	error_func() (trident.absorption_spectrum.absorption_spectrum.AbsorptionSpectrum method)

 	(trident.spectrum_generator.SpectrumGenerator method)

F

 	
 	from_roman() (in module trident.roman)

G

 	
 	generate_total_fit() (in module trident.absorption_spectrum.absorption_spectrum_fit)

I

 	
 	Instrument (class in trident.instrument)

L

 	
 	lambda_field (trident.absorption_spectrum.absorption_spectrum.AbsorptionSpectrum property)

 	(trident.spectrum_generator.SpectrumGenerator property)

 	LightRay (class in trident.light_ray)

 	Line (class in trident.line_database)

 	
 	LineDatabase (class in trident.line_database)

 	load_line_list_from_file() (trident.line_database.LineDatabase method)

 	load_spectrum() (in module trident.spectrum_generator)

 	(trident.spectrum_generator.SpectrumGenerator method)

 	LSF (class in trident.lsf)

M

 	
 	make_compound_ray() (in module trident.ray_generator)

 	make_light_ray() (trident.light_ray.LightRay method)

 	make_onezone_dataset() (in module trident.utilities)

 	
 	make_onezone_ray() (in module trident.utilities)

 	make_simple_ray() (in module trident.ray_generator)

 	make_spectrum() (trident.absorption_spectrum.absorption_spectrum.AbsorptionSpectrum method)

 	(trident.spectrum_generator.SpectrumGenerator method)

P

 	
 	parse_subset() (trident.line_database.LineDatabase method)

 	parse_subset_to_ions() (trident.line_database.LineDatabase method)

 	
 	plan_cosmology_splice() (trident.light_ray.LightRay method)

 	plot_spectrum() (in module trident.spectrum_generator)

 	(trident.spectrum_generator.SpectrumGenerator method)

S

 	
 	save_spectrum() (trident.spectrum_generator.SpectrumGenerator method)

 	
 	select_lines() (trident.line_database.LineDatabase method)

 	SpectrumGenerator (class in trident.spectrum_generator)

T

 	
 	tau_field (trident.absorption_spectrum.absorption_spectrum.AbsorptionSpectrum property)

 	(trident.spectrum_generator.SpectrumGenerator property)

 	
 	to_roman() (in module trident.roman)

 	trident() (in module trident.config)

 	trident_path() (in module trident.config)

V

 	
 	verify() (in module trident.config)

 _images/RD0009_2d-Profile_density_temperature_O_p5_mass.png
108

107

100

Temperature (K)
S

104

103

10120—32

16—31

10‘—30

102 1078
Density (%)

16—27

16—26

10-25

103

104

105

106

107

108

109

10-10

10-11

10-12

O P5 Mass Probability Density

_images/RD0009_Projection_z_O_p5_number_density.png
x (Mpc)

_images/lightray.png
=

p.T.Z

_images/projection.png
<+
=

=

_images/spec_CI_1193_1194.png
Relative Flux

1.0

0.8

0.6

0.4

0.2

0.0

1160

1180

1200
Wavelength [A]

1220

1240

nav.xhtml

 Table of Contents

 		
 Trident Documentation

 		
 Installation

 		
 Versions of Trident

 		
 Trident’s Major Dependency: yt

 		
 Installing the Stable Version of yt and Trident

 		
 Installing the Development Version of yt and Trident

 		
 Step 0: Ensure Conda is Installed

 		
 Step 1: Install yt

 		
 Step 2: Install Trident

 		
 Step 3: Get Ionization Table and Verify Installation

 		
 Step 4: Science!

 		
 Manually Installing your Ionization Table

 		
 Uninstallation or Switching Code Versions

 		
 Updating to the Latest Version

 		
 Updating to the Latest Stable Release

 		
 Updating to the Latest Development Version

 		
 Annotated Example

 		
 Simple LightRay Generation

 		
 Overplotting a LightRay’s Trajectory on a Projection

 		
 Calculating Column Densities

 		
 Spectrum Generation

 		
 Compound LightRays

 		
 Adding Ion Fields

 		
 How does it work?

 		
 Generating species fields

 		
 Light Ray Generator

 		
 Simple Rays

 		
 Compound Rays

 		
 Ray Fields

 		
 Calculating Column Densities

 		
 Examining LightRay Solution Data

 		
 Useful Tips for Making Compound LightRays

 		
 How many snapshots do I need for a compound ray?

 		
 My snapshots are too far apart!

 		
 What if I have a zoom-in simulation?

 		
 I want a continous trajectory over the entire ray.

 		
 Advanced Spectrum Generation

 		
 Setting the spectrograph

 		
 Choosing what absorption features to include

 		
 Setting Wavelength Bounds Automatically

 		
 Making Spectra in Velocity Space

 		
 Making Spectra from a Subset of a Ray

 		
 Fitting Absorption Spectra

 		
 Loading an Absorption Spectrum

 		
 Specifying Species Properties

 		
 Generating Fit of Spectrum

 		
 Saving a Spectrum Fit

 		
 Procedure for Generating Fits

 		
 Finding Line Complexes

 		
 Fitting a Line Complex

 		
 Checking Fit Results

 		
 Saturated Lyman Alpha Fitting Tools

 		
 Internals and Extensions

 		
 Internal Classes

 		
 Light Ray Generator

 		
 AbsorptionSpectrum

 		
 Extensions

 		
 Fitting Absorption Spectra

 		
 Testing

 		
 Running the Test Suite

 		
 Generating Gold Standard Answer Test Results for Comparison

 		
 The Tests Failed – What Do I Do?

 		
 Updating the Testing Gold Standard

 		
 Frequently Asked Questions

 		
 Why don’t I have any absorption features in my spectrum?

 		
 I don’t have a metallicity field in my dataset–What can I do?

 		
 What functions are available and what is their syntax?

 		
 What version of Trident am I running?

 		
 Where is Trident installed? Where are its data files?

 		
 How do I join the mailing list?

 		
 How do I learn more about the algorithms used in Trident?

 		
 How do I cite Trident in my research?

 		
 How do I get an invite to the Trident slack channel?

 		
 API Reference

 		
 Generating Rays

 		
 trident.ray_generator.make_simple_ray

 		
 trident.ray_generator.make_compound_ray

 		
 trident.light_ray.LightRay

 		
 Generating Spectra

 		
 trident.spectrum_generator.SpectrumGenerator

 		
 trident.absorption_spectrum.absorption_spectrum.AbsorptionSpectrum

 		
 trident.instrument.Instrument

 		
 trident.lsf.LSF

 		
 trident.line_database.Line

 		
 trident.line_database.LineDatabase

 		
 Plotting Spectra

 		
 trident.spectrum_generator.load_spectrum

 		
 trident.spectrum_generator.plot_spectrum

 		
 Adding Ion Fields

 		
 trident.ion_balance.add_ion_fields

 		
 trident.ion_balance.add_ion_fraction_field

 		
 trident.ion_balance.add_ion_number_density_field

 		
 trident.ion_balance.add_ion_density_field

 		
 trident.ion_balance.add_ion_mass_field

 		
 Miscellaneous Utilities

 		
 trident.utilities.make_onezone_dataset

 		
 trident.utilities.make_onezone_ray

 		
 trident.roman.to_roman

 		
 trident.roman.from_roman

 		
 trident.config.trident_path

 		
 trident.config.trident

 		
 trident.config.verify

 		
 trident.absorption_spectrum.absorption_spectrum_fit.generate_total_fit

 		
 Citation

 		
 Changelog

 		
 Contributors

 		
 Version 1.3 (August 22, 2022)

 		
 Bug Fixes

 		
 Version 1.2.3 (March 18, 2020)

 		
 Enhancements

 		
 Bug Fixes

 		
 Version 1.2.2 (November 14, 2019)

 		
 Bug Fixes

 		
 Version 1.2.1 (October 1, 2019)

 		
 Bug Fixes

 		
 Version 1.2 (September 19, 2019)

 		
 New Features

 		
 Bug Fixes

 		
 Minor Enhancements

 		
 Version 1.1 (November 18, 2017)

 		
 Version 1.0 (November 16, 2017)

 		
 Help

 		
 Update the Code

 		
 Search Documentation and Mailing List Archives

 		
 Contact our Mailing List

 		
 Join our Slack Channel

_images/spec_HCNO.png
Relative Flux

1.0

0.8

0.6

0.4

0.2

0.0

1160

1180

1200
Wavelength [A]

1220

1240

_images/spec_NV.png
Relative Flux

1.0

0.8

0.6

0.4

0.2

0.0

1160

1180

1200
Wavelength [A]

1220

1240

_images/spec_CNO.png
Relative Flux

1.0

0.8

0.6

0.4

0.2

0.0

1160

1180

1200
Wavelength [A]

1220

1240

_images/spec_H.png
Relative Flux

1.0

0.8

0.6

0.4

0.2

0.0

1160

1180

1200
Wavelength [A]

1220

1240

_images/spec_cutregion.png
Relative Flux

=
=]

o
o

I

—— all gas
—— cold gas

o
o

o
~

o
o

0.0
1200 1205 1210 1215 1220 1225

‘Wavelength [A]

_images/spec_final.png
Relative Flux

35
3.0
25
20
15
1.0
0.5

0.0
11

ANt

50 1200 1250 1300 1350 1400 1450
Wavelength [A]

_images/spec_all.png
Relative Flux

1.0

0.8

0.6

0.4

0.2

0.0

',

1160

1180

1200
Wavelength [A]

1220

1240

_images/spec_auto.png
Relative Flux

=
=]

o
o

o
o

o
S

o
o

0.0
1202.5

1205.0

1207.5

1210.0

1212.5 1215.0
‘Wavelength [A]

1217.5

1220.0

1222.5

_images/spec_raw.png
Relative Flux

1.0

0.8

0.6

0.4

0.2

0.0
1150

1200

1250

1300
Wavelength [A]

1350

1400

1450

_images/spec_velocity.png
Relative Flux

=
=]

o
o

o
o

o
~

o
o

o
o

—3000

—2000

—1000
Velocity [km/s]

1000

2000

_images/math/0800f60728d8b0d3e0de669d9fdf717090058924.png

_images/math/c2deca2dd7cd6fc4a69548c5ca9347902d760a3d.png
1+ 2) N est

_images/math/f52e428a596299d136f6a197f954d730669c0253.png

_static/plus.png

_static/file.png

_static/minus.png

